R. Rahmanzadeh

, University Hospital Basel and University of Basel Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering

Author Of 2 Presentations

Biomarkers and Bioinformatics Oral Presentation

PS09.05 - Value of serum neurofilament light chain levels as a biomarker of suboptimal treatment response in MS clinical practice

Abstract

Background

Serum neurofilament light chain (sNfL) reflects neuro-axonal damage and may qualify as a biomarker of suboptimal response to disease modifying therapy (DMT).

Objectives

To investigate the predictive value of sNfL in clinically isolated syndrome (CIS) and relapsing-remitting (RR) MS patients with established DMT for future MS disease activity in the Swiss MS Cohort Study.

Methods

All patients were on DMT for at least 3 months. sNfL was measured 6 or 12-monthly with the NF-light®assay. The association between sNfL and age was modeled using a generalized additive model for location scale and shape. Z-scores (sNfLz) were derived thereof, reflecting the deviation of a patient sNfL value from the mean value of same age healthy controls (n=8865 samples). We used univariable mixed logistic regression models to investigate the association between sNfLz and the occurrence of clinical events (relapses, EDSS worsening [≥1.5 steps if EDSS 0; ≥1.0 if 1.0-5.5 or ≥0.5 if >5.5] in the following year in all patients, and in those fulfilling NEDA-3 criteria (no relapses, EDSS worsening, contrast enhancing or new/enlarging T2 lesions in brain MRI, based on previous year). We combined sNfLz with clinical and MRI measures of MS disease activity in the previous year (EDA-3) in a multivariable mixed logistic regression model for predicting clinical events in the following year.

Results

sNfL was measured in 1062 patients with 5192 longitudinal samples (median age 39.7 yrs; EDSS 2.0; 4.1% CIS, 95.9% RRMS; median follow-up 5 yrs). sNfLz predicted clinical events in the following year (OR 1.21 [95%CI 1.11-1.36], p<0.001, n=4624). This effect increased in magnitude with increasing sNfLz (sNfLz >1: OR 1.41 [95%CI 1.15-1.73], p=0.001; >1.5: OR 1.80 [95%CI 1.43-2.28], p<0.001; >2: OR 2.33 [95%CI 1.74-3.14], p<0.001). Similar results were found for the prediction of future new/enlarging T2 lesions and brain volume loss. In the multivariable model, new/enlarging T2 lesions (OR 1.88 [95%CI 1.13-3.12], p=0.016) and sNfLz>1.5 (OR 2.18 [95%CI 1.21-3.90], p=0.009) predicted future clinical events (n=853), while previous EDSS worsening, previous relapses and current contrast enhancement did not. In NEDA-3 patients, change of sNfLz (per standard deviation) was associated with a 37% increased risk of clinical events in the subsequent year (OR 1.37 [95%CI 1.04-1.78], p=0.025, n=587).

Conclusions

Our data support the value of sNfL levels, beyond the NEDA3 concept, for treatment monitoring in MS clinical practice.

Collapse
Machine Learning/Network Science Oral Presentation

PS16.04 - RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesions assessment in multiple sclerosis

Speakers
Presentation Number
PS16.04
Presentation Topic
Machine Learning/Network Science
Lecture Time
13:27 - 13:39

Abstract

Background

In multiple sclerosis (MS), perilesional chronic inflammation appears on in vivo 3T susceptibility-based magnetic resonance imaging (MRI) as non-gadolinium-enhancing paramagnetic rim lesions (PRL). A higher PRL burden has been recently associated with a more aggressive disease course. The visual detection of PRL by experts is time-consuming and can be subjective.

Objectives

To develop a multimodal convolutional neural network (CNN) capable of automatically detecting PRL on 3D-T2*w-EPI unwrapped phase and 3D-T2w-FLAIR images.

Methods

124 MS cases (87 relapsing remitting MS, 16 primary progressive MS and 21 secondary progressive MS) underwent 3T MRI (MAGNETOM Prisma and MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany). Two neurologists visually inspected FLAIR magnitude and EPI phase images and annotated 462 PRL. 4857 lesions detected by an automatic segmentation (La Rosa et al. 2019) without overlap with PRL were considered non-PRL. The prototype RimNet was built upon two single CNNs, each fed with 3D patches centered on candidate lesions in phase and FLAIR images, respectively. A two-step feature-map fusion, initially after the first convolutional block and then before the fully connected layers, enhances the extraction of low and high-level multimodal features. For comparison, two unimodal CNNs were trained with phase and FLAIR images. The areas under the ROC curve (AUC) were used for evaluation (DeLong et al. 1988). The operating point was set at a lesion-wise specificity of 0.95. The patient-wise assessment was conducted by using a clinically relevant threshold of four rim+ lesions per patient (Absinta et al. 2019).

Results

RimNet (AUC=0.943) outperformed the phase and FLAIR image unimodal networks (AUC=0.913 and 0.855, respectively, P’s <0.0001). At the operating point, RimNet showed higher lesion-wise sensitivity (70.6%) than the unimodal phase network (62.1%), but lower than the experts (77.7%). At the patient level, RimNet performed with sensitivity of 86.8% and specificity of 90.7%. Individual expert ratings yielded averaged sensitivity and specificity values of 76.3% and 99.4%, respectively.

Conclusions

The excellent performance of RimNet supports its further development as an assessment tool to automatically detect PRL in MS. Interestingly, the unimodal FLAIR network performed reasonably well despite the absence of a paramagnetic rim, suggesting that morphometric features such as volume or shape might be a distinguishable feature of PRL.

Collapse