University Hospital Basel and University of Basel
Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering

Author Of 1 Presentation

Biomarkers and Bioinformatics Oral Presentation

PS09.05 - Value of serum neurofilament light chain levels as a biomarker of suboptimal treatment response in MS clinical practice

Abstract

Background

Serum neurofilament light chain (sNfL) reflects neuro-axonal damage and may qualify as a biomarker of suboptimal response to disease modifying therapy (DMT).

Objectives

To investigate the predictive value of sNfL in clinically isolated syndrome (CIS) and relapsing-remitting (RR) MS patients with established DMT for future MS disease activity in the Swiss MS Cohort Study.

Methods

All patients were on DMT for at least 3 months. sNfL was measured 6 or 12-monthly with the NF-light®assay. The association between sNfL and age was modeled using a generalized additive model for location scale and shape. Z-scores (sNfLz) were derived thereof, reflecting the deviation of a patient sNfL value from the mean value of same age healthy controls (n=8865 samples). We used univariable mixed logistic regression models to investigate the association between sNfLz and the occurrence of clinical events (relapses, EDSS worsening [≥1.5 steps if EDSS 0; ≥1.0 if 1.0-5.5 or ≥0.5 if >5.5] in the following year in all patients, and in those fulfilling NEDA-3 criteria (no relapses, EDSS worsening, contrast enhancing or new/enlarging T2 lesions in brain MRI, based on previous year). We combined sNfLz with clinical and MRI measures of MS disease activity in the previous year (EDA-3) in a multivariable mixed logistic regression model for predicting clinical events in the following year.

Results

sNfL was measured in 1062 patients with 5192 longitudinal samples (median age 39.7 yrs; EDSS 2.0; 4.1% CIS, 95.9% RRMS; median follow-up 5 yrs). sNfLz predicted clinical events in the following year (OR 1.21 [95%CI 1.11-1.36], p<0.001, n=4624). This effect increased in magnitude with increasing sNfLz (sNfLz >1: OR 1.41 [95%CI 1.15-1.73], p=0.001; >1.5: OR 1.80 [95%CI 1.43-2.28], p<0.001; >2: OR 2.33 [95%CI 1.74-3.14], p<0.001). Similar results were found for the prediction of future new/enlarging T2 lesions and brain volume loss. In the multivariable model, new/enlarging T2 lesions (OR 1.88 [95%CI 1.13-3.12], p=0.016) and sNfLz>1.5 (OR 2.18 [95%CI 1.21-3.90], p=0.009) predicted future clinical events (n=853), while previous EDSS worsening, previous relapses and current contrast enhancement did not. In NEDA-3 patients, change of sNfLz (per standard deviation) was associated with a 37% increased risk of clinical events in the subsequent year (OR 1.37 [95%CI 1.04-1.78], p=0.025, n=587).

Conclusions

Our data support the value of sNfL levels, beyond the NEDA3 concept, for treatment monitoring in MS clinical practice.

Collapse

Author Of 5 Presentations

Biomarkers and Bioinformatics Poster Presentation

P0097 - Intrathecal immunoglobulin M synthesis is associated with higher serum neurofilament light chain levels and increased MRI disease activity in MS (ID 1089)

Abstract

Background

Intrathecal IgM synthesis was reported to be associated with higher clinical disease activity and severity. We found an association also with earlier use of high efficacy treatments in relapsing MS (RMS).

Objectives

To explore whether patients with intrathecal IgM synthesis show a) higher serum neurofilament light chain levels (sNfL) as a reflection of neuronal damage, or b) signs of increased disease severity in cerebral MRI, in patients with RMS followed in the Swiss MS Cohort Study.

Methods

487 patients were categorized by presence of oligoclonal IgG bands (OCGB) and intrathecally produced IgG/M:

1) OCGB-/IgG-/IgM- (reference [ref]);

2) OCGB+/IgG-/IgM-;

3) OCGB+/IgG+/IgM- and

4) OCGB+/IgG+/IgM+.

sNfL was measured (at baseline and every 6- or 12 months) with the NF-light® assay. Age-dependent sNfL z-scores (sNfLz) were modelled in 8865 healthy control samples to reflect the deviation of a patient sNfL value compared to mean values observed in same age healthy controls. Yearly T2 lesion number and occurrence of new/enlarging T2 lesions were automatically assessed in cerebral MRIs and checked manually. Contrast enhancing lesions (CEL) were manually quantified. Linear or negative binomial mixed models were used to investigate the associations between the four CSF Ig patterns and longitudinal sNfLz and MRI measures, adjusted for DMT and other covariates.

Results

IgM+ patients had higher sNfLz vs reference (estimate 0.50 [CI 0.12, 0.89], p=0.011), whereas those with only OCGB+ (0.11 [-0.28, 0.50], p=0.582) or with OCGB+/IgG+ (0.20 [-0.16, 0.56], p=0.270) did not (n=2970 observations). This was confirmed when analyzing only untreated patients adjusting for T2 and CEL numbers (1.16 [0.47, 1.86], p<0.01 vs 0.58 [-0.11, 1.27], p=0.1022 vs 0.51 [-0.11, 1.13], p=0.108 vs ref, respectively) (n=234).

IgM+ patients had 2.28-fold more T2 lesions ([1.51, 3.44], p<0.01) vs ref; for patients with only OCGB+ (1.61 [1.07, 2.43], p=0.0237) or OCGB+/IgG+ (1.58 [CI 1.08, 2.32], p=0.0179) (n=1580) this association was weaker.

IgM+ was associated with a 2.47-fold risk for new/enlarging T2 lesions on yearly follow-up MRIs vs ref (2.47 [1.28, 4.78], p<0.01) but not the two other patient groups (1.84 [CI 0.93; 3.65], p=0.0799 and 1.61 [CI 0.87; 2.95], p=0.1280) (n=861).

Conclusions

Intrathecal IgM synthesis was consistently associated with quantitative measures of neuro-axonal injury and disease severity in RMS. Our findings strongly support the clinical utiliy of this biomarker.

Collapse
Biomarkers and Bioinformatics Poster Presentation

P0160 - Serum NfL z-scores derived from a large healthy control group reflect different levels of treatment effect in a real-world setting (ID 916)

Abstract

Background

Serum neurofilament light chain (sNfL) levels reflect neuroaxonal damage and relate to disease activity in MS. sNfL may qualify as well as a biomarker of suboptimal treatment response to disease modifying therapies (DMT). Establishment of age-dependent reference ranges in healthy controls is a prerequisite for developing this biomarker for clinical use.

Objectives

To compare on-treatment sNfL levels with values from a healthy control cohort and to investigate the effect of DMTs on sNfL levels in patients from the Swiss MS Cohort Study.

Methods

sNfL was measured (at baseline and every 6- or 12 months) with the NF-light® assay. Age-dependent sNfL z-scores (sNfLz) were modeled in healthy controls using a generalized additive model for location scale and shape to reflect the deviation of a patient sNfL value from the mean value of same age healthy controls. Linear mixed models were used to investigate the associations between clinical characteristics, DMT and longitudinal sNfLz. Interaction terms and splines were used to model sNfLz and for comparison log(NfL), and their dynamics under treatment.

Results

sNfL was measured in 1368 patients with 7550 longitudinal samples (baseline: median age: 41.9 yrs; 5.4% CIS, 83.2% RRMS, 5.6% SPMS, 5.8% PPMS; median EDSS: 2.0; median follow-up: 4.6 yrs) and 4133 healthy controls with 8865 samples (median age: 44.8 yrs). In the multivariable model, sNfLz increased with EDSS (0.131/step, [95% CI 0.101;0.161]), recent (<120 days) relapse (0.739 [0.643;0.835]) decreased with age (-0.014/year [-0.02;-0.009]), and time on DMT (-0.040/year [-0.054;-0.027]); sNfLz were lower when sampled while on more effective DMT (oral versus platform injectables: -0.229 [-0.344;-0.144]; monoclonal antibodies (mAB) versus platform injectables: -0.349 [-0.475;-0.224]), (p<0.001 for all associations). sNfLz were inversely associated with the hierarchy in efficacy of mAB over orals and orals over platform therapies with regard to slope and extent of decrease (interaction between time under DMT and DMT class: p<0.001). sNfLz, but not log(NfL) showed normalization of sNfL levels by mAB to healthy control levels.

Conclusions

The dynamic change of sNfLz on DMT reflects closely their relative clinical efficacy and is more meaningful than log(sNfL) by excluding age as a confounding factor. Use of sNfLz based on a large normative database as an age-independent sNfL measure improves the accuracy of the sNfL signal and hence their clinical utility.

Collapse
Imaging Poster Presentation

P0545 - Automatic MS lesions segmentation using LeMan-PV as a clinical decision-support tool: a longitudinal analysis (ID 1590)

Abstract

Background

LeMan-PV is a prototype that performs cross-sectional and longitudinal detection of Multiple Sclerosis (MS) lesions, which has been validated on conventional (cMRI) and advanced magnetic resonance imaging at 3T (Fartaria et al. 2019). Since this software provides a report that is available shortly after image acquisition, it may be ideal as clinical decision-support tool.

Objectives

To assess LeMan-PV as clinical decision-support tool in a monocentric real-world cMRI dataset from the Swiss Multiple Sclerosis Cohort.

Methods

262 MS patients underwent cMRI at Basel University Hospital in a mean of 3.5 follow-up sessions, with an average of 399 days between two consecutive sessions. cMRI sequences were acquired at 1.5T and 3T in 725 and 195 sessions, respectively. Cross-sectional and longitudinal MS lesions segmentation (i.e. identification of new and enlarging lesions - NLs, ELs) was performed using the LeMAN-PV prototype software. An expert neuroradiologist performed a radiological reading of the number of NLs and ELs in the most recent acquisition by comparing it to the previous one (ground truth, GT), considering only lesions with a diameter larger than 3 mm. The minimum volume thresholds to identify an NL and an EL were chosen by minimizing the patient-wise error between the automated count and the expert ground truth. Two scenarios were evaluated by first assuming disease activity if one or more EL were present, and second by considering activity if NL were present in the new acquisition.

Results

The volume thresholds chosen were 11 and 12 mm3 for ELs and NLs, respectively. For those, LeMan-PV detected 11% more of both ELs and NLs than the neuroradiologist. In the patient-wise evaluation of cases with both sessions acquired at 1.5T (70%), LeMan-PV showed sensitivities of 93% and 78% and specificities of 62% and 43% when evaluating ELs and NLs. For the 3T pairs of sessions (8%), values were 68% and 72% for ELs and 73% and 68% for NLs. Finally, for cases with a first acquisition at 1.5T and a second at 3T (22%), values were 76% and 73% for ELs and 71% and 65% for NLs.

Conclusions

The count of new and enlarging MS lesions using LeMan-PV were close to the one performed by an expert neuroradiologist; the software performed better when assessing disease activity via detection of enlarging lesions rather than by identifying new lesions. More 3T data is being currently collected at 3T to provide a size-matched inter-scanner comparison.

Collapse
Imaging Poster Presentation

P0638 - Role of Gadolinium-based contrast agents to detect subclinical disease activity in clinically stable patients in the Swiss MS Cohort Study (ID 821)

Abstract

Background

Gadolinium (Gd)-based contrast agents are widely used to assess disease activity and treatment response by MRI in multiple sclerosis (MS). There is, however, increasing concern about their safety as their repeated administration may lead to brain parenchymal accumulation, while preclinical models suggest that they induce mitochondrial toxicity and neuronal cell death. Moreover, recent reports have demonstrated that three-dimensional (3D) T2-weighted Fluid-Attenuated-Inversion-Recovery (FLAIR) is highly sensitive in detecting new or enlarging MS lesions.

Objectives

To explore whether the presence of contrast enhancing lesions (CEL) based on Gd injection is more sensitive in detecting lesional activity in clinically stable MS patients in comparison to the analysis of new or enlarging MS lesions by 3D FLAIR.

Methods

MS patients being part of the observational, multicenter Swiss Multiple Sclerosis Cohort Study (SMSC) with contrast enhanced T1-weighted (T1w) images were included. Clinical stability was defined as no relapse and no Expanded Disability Status Scale (EDSS) increase during at least twelve months prior to MRI. Presence of CEL was assessed on contrast enhanced T1w images. Presence of new or enlarging T2w lesions was assessed manually on 3D FLAIR in an independent analysis by a different investigator in clinically stable MS patients presenting with CEL.

Results

3930 MRI scans (3.0 Tesla n=1497 (38%)) in 1057 participants (685 women, median age 42.0 years, 941 with relapsing MS, 116 with progressive MS, median EDSS 2.0 (range 1.5-3.5), median disease duration 7.4 years) were included.

Of 2620 MRI scans (66.7%) acquired in clinically stable conditions 46 (1.8%) demonstrated CEL. In all of these, new or enlarging T2w lesions were detectable by 3D FLAIR when a previous MRI was available for comparison (previous MRI available in 29/46; median number of new or enlarging T2w lesions: 3 (range 1-41, total number 176); median number of CEL: 1 (range 1-4, total number 47)).

Conclusions

In our large cohort from clinical practice, the assessment of new or enlarging lesions by 3D FLAIR was equally sensitive as the quantification of CEL to detect disease activity in clinically stable MS patients, challenging current practice of the use of Gd-enhanced MRI for monitoring of MS in clinical routine.

Collapse
Pathogenesis – the Blood-Brain Barrier Poster Presentation

P0945 - Brain choroid plexus volume in Multiple Sclerosis versus Neuromyelitis Optica Spectrum Disease (ID 1476)

Abstract

Background

Neuromyelitis optica spectrum disease (NMOSD) and multiple sclerosis (MS) have a different pathophysiology. Accumulating evidence suggests that the choroid plexus plays a pivotal role in the pathogenesis of MS. However, MRI data comparing the choroid plexus volume between MS and NMOSD are scarce.

Objectives

To compare the choroid plexus volume in MS vs. NMOSD in vivo using high-resolution 3D MRI data. Migraine patients and healthy individuals served as control groups.

Methods

We included 95 MS patients [45% secondary progressive (SP); mean age 51.0±11.5 years; disease duration 20.8±10.4 years, 62% female; median Expanded Disability Status Scale (EDSS) 4.0], 43 NMOSD patients [28/43 anti-aquaporin 4 antibody positive; 11/43 anti-myelin oligodendrocyte glycoprotein antibody positive; 87% female; mean age 50.0±13.8 years; disease duration 6.8±7.3 years, median EDSS 3.0], 38 migraine patients [mean age 39±13 years, 79% female; 15/38 migraine with aura] and 65 healthy individuals [HCs, mean age 41±17 years, 48% female]. The choroid plexus of the lateral ventricles and T2-weighted (T2w) white matter lesions (WMLs) were segmented fully automated on T1-weighted (T1w) magnetization-prepared rapid gradient echo (MPRAGE) images and fluid attenuated inversion recovery sequences (FLAIR, voxel size of both sequences 1x1x1 mm3), respectively, using a supervised deep learning algorithm (multi-dimensional gated recurrent units). Total intracranial volume (TIV) and lateral ventricle volumes were assessed fully automated using Freesurfer. All outputs were reviewed and manually corrected (if necessary) using 3D-Slicer by trained raters who were blinded to the clinical information. Group differences were analyzed using multivariable generalized linear models (GLMs) adjusted for age, gender, TIV and lateral ventricle volume. Cohens’ d was used to calculate the standardized difference between the respective groups. Given p-values are adjusted for multiple comparisons (Bonferroni).

Results

Mean choroid plexus was larger in MS compared to NMOSD (1907±455 vs. 1467±408 µl; p<0.001, d=0.86), HCs (1663±424 µl; p=0.007, d=1.17) and migraine (1527±366 µl; p=0.02, d=0.72). There was no statistical difference in the choroid plexus volume between NMOSD, migraine and HCs. The choroid plexus was marginally larger in RRMS than SPMS (1959±482 vs. 1875±476 µl; p=0.28; d=0.17) and in untreated MS patients compared to MS patients on disease modifying therapy (2111±382 vs. 1876±459 µl; p=0.36). However, these differences did not reach statistical significance after correction for multiple comparisons. There was no association between the choroid plexus volume and total T2w WML volume in MS.

Conclusions

Patients with MS have larger choroid plexus than HCs, migraine and NMOSD patients. Further studies are warranted to investigate the respective roles of the choroid plexus in the pathogenesis of MS and NMOSD.

Collapse