University Hospital Basel and University of Basel
Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research

Author Of 2 Presentations

Imaging Oral Presentation

FC03.03 - Depicting multiple sclerosis pathology at 160μm isotropic resolution by human whole-brain postmortem 3T magnetic resonance imaging

Speakers
Presentation Number
FC03.03
Presentation Topic
Imaging
Lecture Time
13:24 - 13:36

Abstract

Background

Postmortem magnetic resonance imaging (MRI) of formalin-fixed healthy and diseased human brains with ultra-high spatial resolution has the great potential to depict tissue architecture in fine detail, allowing a deeper understanding of pathological processes. Whole-brain imaging is important since it provides neuroanatomic relationships, reference points across distant brain regions, and a comprehensive view of pathologies affecting the brain. However, ultra-high-resolution whole-brain postmortem MRI is challenging and has been so far almost exclusively performed at 7T with specialized hardware.

Objectives

To develop a 3D isotropic 160µm ultra-high-resolution imaging (URI) approach for human whole-brain ex vivo acquisitions on a standard clinical 3T MRI system. To explore the sensitivity and specificity of the approach to specific pathological features of multiple sclerosis (MS).

Methods

A fixed whole human brain from a patient with secondary progressive MS was investigated. Acquisitions were performed on a clinical 3T Siemens Prismafit MRI system with standard hardware components. URI is based on a gradient echo sequence similar to the 7T approach by Edlow et al. 2019. However, it allows to acquire an isotropic 160µm resolution with low hardware demands and to directly reconstruct the image data on the standard 3T MRI system. URI images display a strong, susceptibility-enhanced tissue contrast.

Results

The reconstructed URI images depicted with remarkable quality the diseased human MS brain at 3T field strength. URI allowed to distinguish fine anatomical details such as the subpial molecular layer, the stria of Gennari as well as some intrathalamic nuclei. Additionally, because of the unprecedented spatial resolution and contrast at 3T, URI permitted to easily identify the presence of subpial lesions, detailed features of intracortical lesions such the presence of incomplete/complete iron rims or patterns of iron accumulation in the entire lesion core in both cortical and white matter lesions (CLs/WMLs), lesions affecting the convoluted layers of the cerebellar cortex and nascent submillimetric CLs/WMLs.

Conclusions

URI provides a comprehensive microscopic insight into the whole-human brain at 3T through the micrometric resolution and a tissue-specific, susceptibility-enhanced contrast. We propose URI as an excellent approach to investigate microscopic brain changes of complex pathologies like MS.

Collapse
Biomarkers and Bioinformatics Oral Presentation

PS09.05 - Value of serum neurofilament light chain levels as a biomarker of suboptimal treatment response in MS clinical practice

Abstract

Background

Serum neurofilament light chain (sNfL) reflects neuro-axonal damage and may qualify as a biomarker of suboptimal response to disease modifying therapy (DMT).

Objectives

To investigate the predictive value of sNfL in clinically isolated syndrome (CIS) and relapsing-remitting (RR) MS patients with established DMT for future MS disease activity in the Swiss MS Cohort Study.

Methods

All patients were on DMT for at least 3 months. sNfL was measured 6 or 12-monthly with the NF-light®assay. The association between sNfL and age was modeled using a generalized additive model for location scale and shape. Z-scores (sNfLz) were derived thereof, reflecting the deviation of a patient sNfL value from the mean value of same age healthy controls (n=8865 samples). We used univariable mixed logistic regression models to investigate the association between sNfLz and the occurrence of clinical events (relapses, EDSS worsening [≥1.5 steps if EDSS 0; ≥1.0 if 1.0-5.5 or ≥0.5 if >5.5] in the following year in all patients, and in those fulfilling NEDA-3 criteria (no relapses, EDSS worsening, contrast enhancing or new/enlarging T2 lesions in brain MRI, based on previous year). We combined sNfLz with clinical and MRI measures of MS disease activity in the previous year (EDA-3) in a multivariable mixed logistic regression model for predicting clinical events in the following year.

Results

sNfL was measured in 1062 patients with 5192 longitudinal samples (median age 39.7 yrs; EDSS 2.0; 4.1% CIS, 95.9% RRMS; median follow-up 5 yrs). sNfLz predicted clinical events in the following year (OR 1.21 [95%CI 1.11-1.36], p<0.001, n=4624). This effect increased in magnitude with increasing sNfLz (sNfLz >1: OR 1.41 [95%CI 1.15-1.73], p=0.001; >1.5: OR 1.80 [95%CI 1.43-2.28], p<0.001; >2: OR 2.33 [95%CI 1.74-3.14], p<0.001). Similar results were found for the prediction of future new/enlarging T2 lesions and brain volume loss. In the multivariable model, new/enlarging T2 lesions (OR 1.88 [95%CI 1.13-3.12], p=0.016) and sNfLz>1.5 (OR 2.18 [95%CI 1.21-3.90], p=0.009) predicted future clinical events (n=853), while previous EDSS worsening, previous relapses and current contrast enhancement did not. In NEDA-3 patients, change of sNfLz (per standard deviation) was associated with a 37% increased risk of clinical events in the subsequent year (OR 1.37 [95%CI 1.04-1.78], p=0.025, n=587).

Conclusions

Our data support the value of sNfL levels, beyond the NEDA3 concept, for treatment monitoring in MS clinical practice.

Collapse

Author Of 7 Presentations

Machine Learning/Network Science Late Breaking Abstracts

LB1213 - Attention-based deep learning identifies a new microstructural diffusion MRI contrast sensitive to focal pathology and related to patient disability (ID 2074)

Speakers
Presentation Number
LB1213
Presentation Topic
Machine Learning/Network Science

Abstract

Background

Microstructural biophysical models reconstructed from advanced diffusion MRI (dMRI) data provide quantitative measures (qMs), which inform about the brain tissue microenvironment, based on different assumptions.

Objectives

To compare the sensitivity of available qMs to focal pathology in multiple sclerosis (MS), and to explore which qMs– or combinations of qMs – are best correlated with patients disability.

Methods

dMRI (1.8 mm isotropic resolution, 149 directions, b-values were 0, 700, 1000, 2000, 3000 s/mm2) was acquired from 67 relapsing-remitting and 33 progressive MS patients (median EDSS: 2.5). The qMs for the isotropic and intra-axonal compartments were derived from the following available models: Ball and Stick, NODDI, SMT-NODDI, MCMDI, NODDIDA, DIAMOND, Microstructure Bayesian approach (MB) and microstructure fingerprinting. In total, 13 qMs were included and subject-wise normalized within brain tissue (nqMs).

To identify the nqMs sensitive to focal pathology, an attention-based convolutional neural network (aCNN) was built to (a) classify randomly sampled WM lesion and perilesional WM patches and (b) generate attention weights (AWs) representing the relative importance of the qMs in the classification. Twenty patients were randomly selected in the test dataset (709 lesion patches and 746 perilesional WM patches), and the rest were in the cross-validation (CV) dataset (2925 lesion patches and 3176 perilesional WM patches). The performance metric was the area under the receiver operating characteristic curve (AUC). Because of the correlation between the nqMs, which may influence the relative AWs, we performed 10-fold CV and selected the nqMS that most contributed to the classification.

To assess which nqMS – or combination of nqMS was best correlated with EDSS, we used Spearman’s correlation coefficient (ρ) with two-sided 20000 permutation tests and followed by Bonferroni correction.

Results

The test AUC was 0.911 indicating the aCNN learned the right AWs to differentiate lesions and perilesional WM. The most discriminating nqMs included isotropic and intra-axonal compartments from MB, the neural density index (NDI) from the NODDI and the intra-axonal compartment from MCMDI.

The sum of isotropic and intra-axonal compartments of the MB (sMB) showed the strongest correlation with EDSS (ρ=-0.40,corr. p<0.0001) followed by the sum of sMB and NDI (ρ=-0.30,corr. p<0.05), and the sum of sMB and intra-axonal compartment from MCMDI (ρ=-0.32,corr. p<0.05). None of the selected nqMs as a single measure and their other combinations correlated with EDSS.

Conclusions

By performing aCNN-aided selection of the openly available WM quantitative measures, we have identified the measures most sensitive to MS focal pathology; furthermore, we have derived a new contrast that – by combining the measures of isotropic and intracellular diffusion – strongly correlated with patients’ disability.

Collapse
Biomarkers and Bioinformatics Poster Presentation

P0097 - Intrathecal immunoglobulin M synthesis is associated with higher serum neurofilament light chain levels and increased MRI disease activity in MS (ID 1089)

Abstract

Background

Intrathecal IgM synthesis was reported to be associated with higher clinical disease activity and severity. We found an association also with earlier use of high efficacy treatments in relapsing MS (RMS).

Objectives

To explore whether patients with intrathecal IgM synthesis show a) higher serum neurofilament light chain levels (sNfL) as a reflection of neuronal damage, or b) signs of increased disease severity in cerebral MRI, in patients with RMS followed in the Swiss MS Cohort Study.

Methods

487 patients were categorized by presence of oligoclonal IgG bands (OCGB) and intrathecally produced IgG/M:

1) OCGB-/IgG-/IgM- (reference [ref]);

2) OCGB+/IgG-/IgM-;

3) OCGB+/IgG+/IgM- and

4) OCGB+/IgG+/IgM+.

sNfL was measured (at baseline and every 6- or 12 months) with the NF-light® assay. Age-dependent sNfL z-scores (sNfLz) were modelled in 8865 healthy control samples to reflect the deviation of a patient sNfL value compared to mean values observed in same age healthy controls. Yearly T2 lesion number and occurrence of new/enlarging T2 lesions were automatically assessed in cerebral MRIs and checked manually. Contrast enhancing lesions (CEL) were manually quantified. Linear or negative binomial mixed models were used to investigate the associations between the four CSF Ig patterns and longitudinal sNfLz and MRI measures, adjusted for DMT and other covariates.

Results

IgM+ patients had higher sNfLz vs reference (estimate 0.50 [CI 0.12, 0.89], p=0.011), whereas those with only OCGB+ (0.11 [-0.28, 0.50], p=0.582) or with OCGB+/IgG+ (0.20 [-0.16, 0.56], p=0.270) did not (n=2970 observations). This was confirmed when analyzing only untreated patients adjusting for T2 and CEL numbers (1.16 [0.47, 1.86], p<0.01 vs 0.58 [-0.11, 1.27], p=0.1022 vs 0.51 [-0.11, 1.13], p=0.108 vs ref, respectively) (n=234).

IgM+ patients had 2.28-fold more T2 lesions ([1.51, 3.44], p<0.01) vs ref; for patients with only OCGB+ (1.61 [1.07, 2.43], p=0.0237) or OCGB+/IgG+ (1.58 [CI 1.08, 2.32], p=0.0179) (n=1580) this association was weaker.

IgM+ was associated with a 2.47-fold risk for new/enlarging T2 lesions on yearly follow-up MRIs vs ref (2.47 [1.28, 4.78], p<0.01) but not the two other patient groups (1.84 [CI 0.93; 3.65], p=0.0799 and 1.61 [CI 0.87; 2.95], p=0.1280) (n=861).

Conclusions

Intrathecal IgM synthesis was consistently associated with quantitative measures of neuro-axonal injury and disease severity in RMS. Our findings strongly support the clinical utiliy of this biomarker.

Collapse
Biomarkers and Bioinformatics Poster Presentation

P0160 - Serum NfL z-scores derived from a large healthy control group reflect different levels of treatment effect in a real-world setting (ID 916)

Abstract

Background

Serum neurofilament light chain (sNfL) levels reflect neuroaxonal damage and relate to disease activity in MS. sNfL may qualify as well as a biomarker of suboptimal treatment response to disease modifying therapies (DMT). Establishment of age-dependent reference ranges in healthy controls is a prerequisite for developing this biomarker for clinical use.

Objectives

To compare on-treatment sNfL levels with values from a healthy control cohort and to investigate the effect of DMTs on sNfL levels in patients from the Swiss MS Cohort Study.

Methods

sNfL was measured (at baseline and every 6- or 12 months) with the NF-light® assay. Age-dependent sNfL z-scores (sNfLz) were modeled in healthy controls using a generalized additive model for location scale and shape to reflect the deviation of a patient sNfL value from the mean value of same age healthy controls. Linear mixed models were used to investigate the associations between clinical characteristics, DMT and longitudinal sNfLz. Interaction terms and splines were used to model sNfLz and for comparison log(NfL), and their dynamics under treatment.

Results

sNfL was measured in 1368 patients with 7550 longitudinal samples (baseline: median age: 41.9 yrs; 5.4% CIS, 83.2% RRMS, 5.6% SPMS, 5.8% PPMS; median EDSS: 2.0; median follow-up: 4.6 yrs) and 4133 healthy controls with 8865 samples (median age: 44.8 yrs). In the multivariable model, sNfLz increased with EDSS (0.131/step, [95% CI 0.101;0.161]), recent (<120 days) relapse (0.739 [0.643;0.835]) decreased with age (-0.014/year [-0.02;-0.009]), and time on DMT (-0.040/year [-0.054;-0.027]); sNfLz were lower when sampled while on more effective DMT (oral versus platform injectables: -0.229 [-0.344;-0.144]; monoclonal antibodies (mAB) versus platform injectables: -0.349 [-0.475;-0.224]), (p<0.001 for all associations). sNfLz were inversely associated with the hierarchy in efficacy of mAB over orals and orals over platform therapies with regard to slope and extent of decrease (interaction between time under DMT and DMT class: p<0.001). sNfLz, but not log(NfL) showed normalization of sNfL levels by mAB to healthy control levels.

Conclusions

The dynamic change of sNfLz on DMT reflects closely their relative clinical efficacy and is more meaningful than log(sNfL) by excluding age as a confounding factor. Use of sNfLz based on a large normative database as an age-independent sNfL measure improves the accuracy of the sNfL signal and hence their clinical utility.

Collapse
Imaging Poster Presentation

P0545 - Automatic MS lesions segmentation using LeMan-PV as a clinical decision-support tool: a longitudinal analysis (ID 1590)

Abstract

Background

LeMan-PV is a prototype that performs cross-sectional and longitudinal detection of Multiple Sclerosis (MS) lesions, which has been validated on conventional (cMRI) and advanced magnetic resonance imaging at 3T (Fartaria et al. 2019). Since this software provides a report that is available shortly after image acquisition, it may be ideal as clinical decision-support tool.

Objectives

To assess LeMan-PV as clinical decision-support tool in a monocentric real-world cMRI dataset from the Swiss Multiple Sclerosis Cohort.

Methods

262 MS patients underwent cMRI at Basel University Hospital in a mean of 3.5 follow-up sessions, with an average of 399 days between two consecutive sessions. cMRI sequences were acquired at 1.5T and 3T in 725 and 195 sessions, respectively. Cross-sectional and longitudinal MS lesions segmentation (i.e. identification of new and enlarging lesions - NLs, ELs) was performed using the LeMAN-PV prototype software. An expert neuroradiologist performed a radiological reading of the number of NLs and ELs in the most recent acquisition by comparing it to the previous one (ground truth, GT), considering only lesions with a diameter larger than 3 mm. The minimum volume thresholds to identify an NL and an EL were chosen by minimizing the patient-wise error between the automated count and the expert ground truth. Two scenarios were evaluated by first assuming disease activity if one or more EL were present, and second by considering activity if NL were present in the new acquisition.

Results

The volume thresholds chosen were 11 and 12 mm3 for ELs and NLs, respectively. For those, LeMan-PV detected 11% more of both ELs and NLs than the neuroradiologist. In the patient-wise evaluation of cases with both sessions acquired at 1.5T (70%), LeMan-PV showed sensitivities of 93% and 78% and specificities of 62% and 43% when evaluating ELs and NLs. For the 3T pairs of sessions (8%), values were 68% and 72% for ELs and 73% and 68% for NLs. Finally, for cases with a first acquisition at 1.5T and a second at 3T (22%), values were 76% and 73% for ELs and 71% and 65% for NLs.

Conclusions

The count of new and enlarging MS lesions using LeMan-PV were close to the one performed by an expert neuroradiologist; the software performed better when assessing disease activity via detection of enlarging lesions rather than by identifying new lesions. More 3T data is being currently collected at 3T to provide a size-matched inter-scanner comparison.

Collapse
Imaging Poster Presentation

P0580 - Focal inflammatory activity and lesion repair are associated with brain atrophy rates in MS patients (ID 1092)

Abstract

Background

The pathogenesis of neurodegeneration in multiple sclerosis (MS) is multifactorial and the determinants of brain atrophy rates are not completely understood.

Objectives

To investigate the association between annualized atrophy rate (AAR) of multiple brain measures (regional cortical thickness (CTh), volumes of basal ganglia, thalamus, white matter, gray matter, brain and brain parenchymal fraction (BPF)) and: (1) annualized rate of new and enlarging white matter lesions (WMLs); (2) annualized rate of resolved WMLs; (3) occurrence of progression independent of relapse activity (PIRA) during follow-up.

Methods

We included 1573 1.5T or 3T brain MRI scans from 378 patients of the Swiss MS Cohort Study (331 relapsing-remitting MS (RRMS), 27 clinically isolated syndrome (CIS), 11 secondary-progressive MS (SPMS), 9 primary-progressive MS (PPMS); 70% female; median age: 41.9 yrs; disease duration: 8.3 yrs; EDSS: 2.0; follow-up time: 4.0 yrs). Longitudinal changes in WMLs were obtained using an automated prototype (LeMan-PV). Brain volumes and CTh AARs were obtained using FreeSurfer longitudinal pipeline (v6.0) after WMLs filling. In patients fulfilling PIRA an EDSS progression had to be confirmed ≥6 months after the index event. Multivariable generalized linear models were used to model the association between AAR (dependent variable) and independent variables (1-3), correcting for age, sex, disease duration and baseline EDSS. p-values were adjusted for Bonferroni multiple comparison correction; for vertex-wise CTh analysis, Monte Carlo Z simulation was performed (cluster threshold p<0.05).

Results

We found positive associations between annualized rate of new and enlarging WMLs and (i) CTh AAR of 8 extensive clusters (bilateral frontal, temporal and occipital regions and right insula, all p<0.01) and (ii) AAR of: caudate bilaterally (p=0.02), white matter volume, brain volume and BPF (p<0.001 for all).

We also found a negative association between annualized rate of resolved WMLs and CTh AAR in 3 cortical clusters (right insula, precentral area and anterior cingulate region, all p<0.05); no associations with AAR of volumes emerged.

57 patients fulfilled PIRA whereas 295 experienced no EDSS progression events: no significant differences in AAR measures were found between these two groups.

Conclusions

In a large cohort of MS patients, with a median follow-up of 4 years, local radiological inflammatory and reparative activity were associated with AAR in multiple brain regions. PIRA did not seem to be related to increased AAR in any of the regions studied.

Collapse
Imaging Poster Presentation

P0624 - Quantitative multiparametric 3T-MRI of postmortem multiple sclerosis whole brains (ID 1583)

Abstract

Background

Postmortem MRI provides precious insights into the relation of MRI metrics to pathoanatomical features of multiple sclerosis (MS) and can help to understand the basis of damage and repair.

Objectives

To investigate the respective features of MS lesions in the cortex and in the white matter using multiparametric postmortem MR imaging at 3T and identify discriminant characteristics of white matter lesion subgroups.

Methods

We scanned three fixed brains of secondary-progressive MS patients (mean disease duration 15.3 years) on a standard clinical 3T-MRI scanner with following sequences: Magnetization Transfer Saturation (MTsat), T1-relaxometry (T1-rt), Myelin Water Fraction (MWF) and Diffusion Tensor - Fractional Anisotropy (DTI-FA). We compared these metrics between (i) cortical lesions (CL, n=118) and normal-appearing grey matter (NAGM, n=186) and (ii) white matter lesions (WML, n=140) and normal-appearing white matter (NAWM, n=53) using a Mann-Whitney U test. Then, we analyzed the differences between different subgroups of WML (periventricular lesions -PVL-, n=38, WM part of leukocortical lesions -WMLCL-, n=36, subcortical lesions -SCL-, n=66, and areas of “dirty white matter” -DWM-, n=15) by performing a Kruskal-Wallis test and a Mann-Whitney U tests for direct comparison. Bonferroni correction for multiple-testing was applied.

Results

CL exhibited lower MTsat (p<0.001), higher T1-rt (p<0.001) and MWF (p<0.01) than normal appearing cortical tissue. WML showed lower MTsat (p<0.001), higher T1-rt (p<0.001), and lower MWF (p<0.001) than normal appearing white matter. DTI-FA did not differ between CL/WML and NAWM/NAGM. MTsat values were lower in the PVL (p<0.001) and higher in the DWM (p<0.001) in comparison to all other lesion subgroups. T1-rt were higher in PVL (p<0.001) compared to the other lesion subgroups. MWF values were higher in DWM and SCL (p<0.01), not statistically different between PVL and WMLCL. DTI-FA values were lower in WMLCL in comparison to all other subgroups (p<0.01) and did not differ between the other categories.

Conclusions

Postmortem MRI metrics in WML/CL as well as in different subgroups of WML, are compatible with myelin damage and tissue destruction. Interestingly, MWF was higher in CL than in NAGM, which might correspond to a predominance of “myelin blistering” pathology in the cortex. Ongoing work aims to directly correlate our findings with detailed histopathological characterization including electron microscopy of myelin damage.

Collapse
Imaging Poster Presentation

P0638 - Role of Gadolinium-based contrast agents to detect subclinical disease activity in clinically stable patients in the Swiss MS Cohort Study (ID 821)

Abstract

Background

Gadolinium (Gd)-based contrast agents are widely used to assess disease activity and treatment response by MRI in multiple sclerosis (MS). There is, however, increasing concern about their safety as their repeated administration may lead to brain parenchymal accumulation, while preclinical models suggest that they induce mitochondrial toxicity and neuronal cell death. Moreover, recent reports have demonstrated that three-dimensional (3D) T2-weighted Fluid-Attenuated-Inversion-Recovery (FLAIR) is highly sensitive in detecting new or enlarging MS lesions.

Objectives

To explore whether the presence of contrast enhancing lesions (CEL) based on Gd injection is more sensitive in detecting lesional activity in clinically stable MS patients in comparison to the analysis of new or enlarging MS lesions by 3D FLAIR.

Methods

MS patients being part of the observational, multicenter Swiss Multiple Sclerosis Cohort Study (SMSC) with contrast enhanced T1-weighted (T1w) images were included. Clinical stability was defined as no relapse and no Expanded Disability Status Scale (EDSS) increase during at least twelve months prior to MRI. Presence of CEL was assessed on contrast enhanced T1w images. Presence of new or enlarging T2w lesions was assessed manually on 3D FLAIR in an independent analysis by a different investigator in clinically stable MS patients presenting with CEL.

Results

3930 MRI scans (3.0 Tesla n=1497 (38%)) in 1057 participants (685 women, median age 42.0 years, 941 with relapsing MS, 116 with progressive MS, median EDSS 2.0 (range 1.5-3.5), median disease duration 7.4 years) were included.

Of 2620 MRI scans (66.7%) acquired in clinically stable conditions 46 (1.8%) demonstrated CEL. In all of these, new or enlarging T2w lesions were detectable by 3D FLAIR when a previous MRI was available for comparison (previous MRI available in 29/46; median number of new or enlarging T2w lesions: 3 (range 1-41, total number 176); median number of CEL: 1 (range 1-4, total number 47)).

Conclusions

In our large cohort from clinical practice, the assessment of new or enlarging lesions by 3D FLAIR was equally sensitive as the quantification of CEL to detect disease activity in clinically stable MS patients, challenging current practice of the use of Gd-enhanced MRI for monitoring of MS in clinical routine.

Collapse

Presenter Of 1 Presentation

Imaging Poster Presentation

P0624 - Quantitative multiparametric 3T-MRI of postmortem multiple sclerosis whole brains (ID 1583)

Abstract

Background

Postmortem MRI provides precious insights into the relation of MRI metrics to pathoanatomical features of multiple sclerosis (MS) and can help to understand the basis of damage and repair.

Objectives

To investigate the respective features of MS lesions in the cortex and in the white matter using multiparametric postmortem MR imaging at 3T and identify discriminant characteristics of white matter lesion subgroups.

Methods

We scanned three fixed brains of secondary-progressive MS patients (mean disease duration 15.3 years) on a standard clinical 3T-MRI scanner with following sequences: Magnetization Transfer Saturation (MTsat), T1-relaxometry (T1-rt), Myelin Water Fraction (MWF) and Diffusion Tensor - Fractional Anisotropy (DTI-FA). We compared these metrics between (i) cortical lesions (CL, n=118) and normal-appearing grey matter (NAGM, n=186) and (ii) white matter lesions (WML, n=140) and normal-appearing white matter (NAWM, n=53) using a Mann-Whitney U test. Then, we analyzed the differences between different subgroups of WML (periventricular lesions -PVL-, n=38, WM part of leukocortical lesions -WMLCL-, n=36, subcortical lesions -SCL-, n=66, and areas of “dirty white matter” -DWM-, n=15) by performing a Kruskal-Wallis test and a Mann-Whitney U tests for direct comparison. Bonferroni correction for multiple-testing was applied.

Results

CL exhibited lower MTsat (p<0.001), higher T1-rt (p<0.001) and MWF (p<0.01) than normal appearing cortical tissue. WML showed lower MTsat (p<0.001), higher T1-rt (p<0.001), and lower MWF (p<0.001) than normal appearing white matter. DTI-FA did not differ between CL/WML and NAWM/NAGM. MTsat values were lower in the PVL (p<0.001) and higher in the DWM (p<0.001) in comparison to all other lesion subgroups. T1-rt were higher in PVL (p<0.001) compared to the other lesion subgroups. MWF values were higher in DWM and SCL (p<0.01), not statistically different between PVL and WMLCL. DTI-FA values were lower in WMLCL in comparison to all other subgroups (p<0.01) and did not differ between the other categories.

Conclusions

Postmortem MRI metrics in WML/CL as well as in different subgroups of WML, are compatible with myelin damage and tissue destruction. Interestingly, MWF was higher in CL than in NAGM, which might correspond to a predominance of “myelin blistering” pathology in the cortex. Ongoing work aims to directly correlate our findings with detailed histopathological characterization including electron microscopy of myelin damage.

Collapse