CNRS
IN2P3
Sébastien Incerti is Director of Research at the National Center for Scientific Research (CNRS) and the National Institute of Nuclear and Particle Physics (IN2P3), in France. He is involved in the development of the open source Geant4 Monte Carlo toolkit (http://geant4.org) for the simulation of particle-matter interactions, and his research activities focus on the study of the biological effects of ionizing radiation in several application areas, including medical physics and space sciences, in particular for the Geant4-DNA project (http://geant4-dna.org) that he has been coordinating since 2008. He is currently IN2P3 Scientific Director for interdisciplinary science.

Author Of 1 Presentation

MODELLING OF WATER RADIOLYSIS FOR ULTRA-HIGH DOSE RATE (FLASH) ELECTRON BEAMS IN GEANT4-DNA

Session Name
Session Type
FLASH Mechanisms Track (Oral Presentations)
Date
Thu, 02.12.2021
Session Time
11:00 - 12:00
Room
Room 2.15
Lecture Time
11:50 - 12:00

Abstract

Background and Aims

FLASH radiation modalities deliver ultra-high dose rates with high dose per pulse and a low number of pulses. In this work, we investigate the impact of electron beams with different doses per pulse (from 0.01 to 40 Gy) on water radiolysis using the Geant4-DNA code.

Methods

The single-track simulation mode is extended to multiple electron tracks delivered in the same pulse to obtain the desired dose to the target volume. This extension allows us to simulate the chemical stage up to hours after radiation exposure.

Results

The G values of hydroxyl radicals (OH), hydrated electrons (eaq) and hydrogen radicals (H) decrease earlier in time as the dose per pulse increases. In oxygenated water, a shorter lifetime of the reactive oxygen species (ROS) – superoxide radical (O2•-) and hydroperoxyl radical (HO2) – is obtained for higher doses per pulse, which reduces the level of hydrogen peroxide (H2O2). These observations are compared with the available experimental data.

Conclusions

We found that the significant reduction in ROS yield results from the high concentration of species generated with high doses per pulse.

Hide