Surgery for rectal cancer locally advanced

A. D'HOORE MD PhD, EBSQ-CR, (hon)FASCRS

Professor of Surgery Chair department of Visceral Surgery University Hospital Leuven Belgium

Actual treatment in rectal cancer

organ sparing

Beyond cTNM adverse MRI features

1. Deep mesorectal invasion

2. Involved MRF

3. EMV invasion

Hunter CJ et al. Ann Surg Oncol 2012

EMVI is a poor prognostic factor

Clinical radiology 2014

EMVI is a poor prognostic factor

MRI risk prediction for pCRM + *Mercury 2*

		MRI SAFE > 1mm		MRI UNSAFE	
EMVI	Anterior	≥ 4 cm	< 4 cm	≥ 4 cm	< 4 cm
neg	neg	1	4	4	13
neg	positive	3	10	11	29
positive	neg	4	13	14	35
positive	positive	11	30	31	60

Validates the MRI low resection plane assessment

- avoids overuse of neoadjuvant treatement
- need for reassessment after neoadjuvant treatment

Response assessment becomes integrated part of surgical decision making

- Upfront surgery

Watch and wait in cCR in locally advanced rectal cancer

- Reduced likelihood for cCR
- Significant regrowth rate

Regrowth-free Survival (1yr)

Habr Gama, Dis Colon Rectum 2017

What is wrong with RT in low risk rectal cancer

- no survival benefit
- morbidity : acute and late toxicity
- increased risk for LARS, genitourinary dysfunction
- chronic pelvic sepsis

Long-term outcome Dutch TME trial

TME TME +RT

Lancet Oncol 2012

Clinical Colorectal cancer 2015

Surgical decision making in distal rectal cancer = complex

- 1. Type and extent of primary tumor
- 2. Response to chemo-radiation
- 3. Perceived ability to clear all tumor (adequate margins) DRM / CRM
- 4. Patient related factors (functional status, comorbidity)
- 5. Patients preference

acceptance suboptimal functional outcome

Increasing SPS for rectal cancer but large hospital variability : 26.9% - 77% (NCCN)

Year

Dodgion CM et al. J Surg Res 2014; 191

Large variability of sphincter preserving surgery in distal Rectal Cancer **PROCARE database**

APR rate 17% - 85%

No difference in oncologic outcome between CAA vs APR

Survival relates to

poor prognostic factors (tumor specific)

patient related factors

Not technique related

Gastroenterol Research and Practice 2017

Can we safely reduce the DRM

J Am Coll Surg 1997; 184: 84±92. Original illustration by Kari C. Toverud

Distal IM spread after chemoradiation : 2% and all <1cm

IM spread distal to macroscopic margin

Caveat : poorly differentiated /signet cell/tumor budding

Guedj N. Human Pathol 2016; **52**:164-172

Response to neo-adjuvant chemoradiation

- assess response (MRI)
- expand the interval (from 6 w to 12w)

Technical aspects :

- low stapled and Colo-anal anastomosis (CAA)
- Intersphincteric resection : partial ISR complete ISR

Rullier type I * **mucosal sleeve** and colo-anal anastomosis preserves the IAS

Tekkis P. et al. *Colorectal Dis* 2015 *Rulier E et al. *Dis Colon Rectum* 2013; **56**

Rullier type 2 Partial intersphincteric (full-thickness)

Schiesser et al. Intersphincteric resection 1994

COLOR II trial (non-inferiority phase III) 20004-2010

1044 patients randomised (2:1)699 in laparoscopic surgery group345 in open surgery group

Locoregional recurrence rate at 3 years : 5.0% in both groups

DFS: 74.8% (laparoscopic) and 70.8% (open)

OS: 86.7% (laparoscopic) and 83.6% (open)

Disease free survival

Overall survival

Color II trial : short-term

	laparoscopy	open	
Duration of surgery	240 (184-300)	188 (150-240)	< 0.0001
Conversions	17%		
Blood loss	200 (100-400)	400 (200-700)	<0.0001
30-day mortality	1%	2%	ns
Overall morbidity	40%	37%	ns
Leak rate	13%	10%	ns
Hospital stay	8.0 (6.0-13.0)	9.0 (7.0-14.0)	<0.36

Lancet Oncol 2013

Transanal TME : optimizing the minimally invasive approach

Distal margin in ta-TME : under direct visual control

single stapled vs manual anastomosis in Rullier type |

CRM positivity

Despite optimized minimally invasive surgery and more sphincter preservation

functional impairement rather the rule

- mean BM/ day 2.7
- perfect fecal continence : 51.2%
- urgency 18.9%

Marin ST et al. Systematic review. Br J Surg 2012

Factors influencing functional outcome after coloanal and intersphincteric resection

	OR	95%CI	p
Age	1.03	0.98 - 1.08	ns
Gender	1.14	0.37 – 3.52	ns
Stage 0-2 3-4	1 1.31	0.44 – 3.95	ns
Preop RT	3.07	1.05 – 8.89	0.04

Chamlou R et al. Ann Surg 2007;246:916-22

Need to improve functional outcome after TME Understanding LARS

% LARS / time after restoration transit (mo)

Ribas Y. et al Int J Colorectal Dis 2017

Advanced rectal cancer increased risk for local and distant failure

- deep mesorectal invasion (> 5mm, >T3b)
- threatened CMF (< 1-2 mm), invaded CMF
- nodes +++ (extramesorectal)
- EMVI
- signet cell, ...

Improving local and distant control in advanced rectal cancer

Higher radiation dose Effective radiation sensitization Increasing interval to surgery Neoadjuvant chemotherapy

Effect of adding mFOLFOX6 after neoadjuvant chemoradiation in locally advanced rectal cancer: a multicentre, phase 2 trial

Julio Garcia-Aguilar, Oliver S Chow, David D Smith, Jorge E Marcet, Peter A Cataldo, Madhulika G Varma, Anjali S Kumar, Samuel Oommen, Theodore Coutsoftides, Steven R Hunt, Michael J Stamos, Charles A Ternent, Daniel O Herzig, Alessandro Fichera, Blase N Polite, David W Dietz, Sujata Patil, Karin Avila, for the Timing of Rectal Cancer Response to Chemoradiation Consortium

lleostomy Radiotherapy (54 gray) infusional 5 FU additional cycles of Folfox

IM:14

Posterior pelvic exenteration

Radical 'en bloc' surgery in T4b = only chance for cure

Male patient: 75 yrs. Moderate operative risk, ASA 2 well differentiated adenocarcinoma,juxta-anal (Rullier II) cT3a N?, M0

Different strategies

Low risk cancer : <u>primary surgery</u>: IS proctectomy + def stoma

Low risk cancer – expects sphincter preservation

<u>radiochemotherapy and surgery</u> (TME + colo-anal anastomosis) but impaired function

radiochemotherapy and increased interval and watch and wait if c CR

Locally advanced rectal cancer

- Spectrum with different risk profiles: local and distant requires adapted multimodal treatment strategies
- MRI optimizes TME and radical surgery
- Transanal TME is the next step in the minimally invasive approach
- Functional outcome should be optimised (focus of clinical research)