

Classification of NET

Barcelona, 29.6.2017

Prof. Dr. Aurel Perren Institute of Pathology University Bern

WHO

Classification of NET

- 1. Diagnosis, grading and staging
- 2. Pancreas: Evidence for change of classification
- 3. Concept of NET G3
- 4. Outlook

Neuroendocrine neoplasms:

- Rare, in all organs
- Similarities with neurons
- Ability to produce hormones

$u^{^{\mathrm{D}}}$

ENETS Frascati 2006/2007

u'

Table 4 Grading proposal for foregut (neuro)endocrine tumors

Grade	Mitotic count (10 HPF) ^a	Ki-67 index (%) ^b
G1	<2	≤2
G2	2–20	3–20
G3	>20	>20

^a10 HPF: high power field=2 mm², at least 40 fields (at 40× magnification) evaluated in areas of highest mitotic density ^bMIB1 antibody; % of 2,000 tumor cells in areas of highest nuclear labeling

Table 4 Grading proposal for foregut (neuro)endocrine tumors

Grade	Mitotic count (10 HPF) ^a	Ki-67 index (%) ^b
G1	<2	≤2
G2	2—20	3–20
G3	>20	>20

^a10 HPF: high power field=2 mm², at least 40 fields (at 40× magnification) evaluated in areas of highest mitotic density ^bMIB1 antibody; % of 2,000 tumor cells in areas of highest nuclear labeling

 u^{b}

Table 4 Grading proposal for foregut (neuro)endocrine tumors

Grade	Mitotic count (10 HPF) ^a	Ki-67 index (%) ^b
G1	<2	≤2
G2	2—20	3–20
G3	>20	>20

^a10 HPF: high power field=2 mm², at least 40 fields (at 40× magnification) evaluated in areas of highest mitotic density ^bMIB1 antibody; % of 2,000 tumor cells in areas of highest nuclear labeling

 u^{b}

Table 4 Grading proposal for foregut (neuro)endocrine tumors

Grade	Mitotic count (10 HPF) ^a	Ki-67 index (%) ^b
G1	<2	≤2
G2	2—20	3–20
G3	>20	>20

^a10 HPF: high power field=2 mm², at least 40 fields (at 40× magnification) evaluated in areas of highest mitotic density ^bMIB1 antibody; % of 2,000 tumor cells in areas of highest nuclear labeling

 u^{b}

Table 4 Grading proposal for foregut (neuro)endocrine tumors

Grade	Mitotic count (10 HPF) ^a	Ki-67 index (%) ^b
G1	<2	≤2
G2	2–20	3–20
G3	>20	>20

^a10 HPF: high power field=2 mm², at least 40 fields (at 40× magnification) evaluated in areas of highest mitotic density ^bMIB1 antibody; % of 2,000 tumor cells in areas of highest nuclear labeling

 u^{t}

Table 4 Grading proposal for foregut (neuro)endocrine tumors

Grade	Mitotic count (10 HPF) ^a	Ki-67 index (%) ^b
G1	<2	≤2
G2	2—20	3–20
G3	>20	>20

^a10 HPF: high power field=2 mm², at least 40 fields (at 40× magnification) evaluated in areas of highest mitotic density bMIB1 antibody; % of 2,000 tumor cells in areas of highest nuclear labeling

TNM-Grading: Evidence pNET

TNM-Grading: Evidence siNET

D UNIVERSITÄT BERN

MV analysis, advanced Ileal/Jejunal- NET:

Variable	HR	95% CI	p
Model 1			
Female gender	1.73	0.55 - 5.44	0.348
Age at diagnosis, years ^a	1.02	0.97 - 1.07	0.337
Ki67 value ^a	1.18	1.07-1.31	0.001
No primary tumor resection	2.41	0.67-8.61	0.174
Model 2			
Female gender	1.67	0.55 - 5.10	0.365
Age at diagnosis, years ^a	1.03	0.98-1.07	0.159
Grading (G1: Ki67 ≤2%; G2: K	i67 3-209	%)	
G2 vs. G1	2.40	0.89-6.44	0.083
No primary tumor resection	3.13	0.94 - 10.42	0.063
Model 3			
Female gender	1.87	0.59 - 5.92	0.288
Age at diagnosis, years ^a	1.02	0.98 - 1.07	0.265
Grading (G1: Ki67 <5%; G2: K	i67 5–209	6)	
G2 vs. G1	3.99	1.46-10.91	0.007
No primary tumor resection	2.41	0.69 - 8.39	0.168

 Biologically, proliferation is a continuous variable

a Continuous variable

- 1. Neuroendocrine Tumor, NET G1
- 2. Neuroendocrine Tumor, NET G2
- 3. Neuroendocrine Carcinoma, NEC (small or large-cell)
- 4. Mixed adeno-neuroendocrine carcinoma, MANEC
- 5. Hyperplastic and preneoplastic lesions

UNIVERSITÄT Bern

- 1. NET G1
- 2. NET G2
- 3. NEC G3

+ TNM Staging

UNIVERSITÄT BERN

Grading

<2% MIB <2 Mitosis

• 1. NET G1

• 2. NET G2

Differentiation

• 3. NEC G3

Classification of NET

- 1. Diagnosis, grading and staging
- 2. Pancreas: Evidence for change of classification
- 3. Concept of NET G3
- 4. Outlook

USA, grade based on mitosis

UNIVERSITÄT Bern

	Ki-67	pN1	2y surv
53 grade concordant pNET G2	2-20%	47%	86%
19 grade discordant pNET	30-50%	52%	74%
43 morphologically pd NEC	50-100%	85%	22%

Differentiation: grade discordant often WD

AJSP 2015, Basturk et al.

Ki-67

FIGURE 3. A, Average Ki67 proliferation index of grade-discordant PanNETs was 40% (as opposed to 74% of small cell-type and 66% of large cell-type poorly differentiated NECs). B, A small cell carcinoma with a Ki67 proliferation index of >95% is depicted here.

Survival

Progression NET to NEC

UNIVERSITÄT Bern

31 NET with focal area of poor differentiation

50% in primary, 50% in metastasis

2y and 5y survival 88% und 49%

DAXX/ATRX/MEN1 mutations in secondary

p53 or RB mutations only in true PD

G3 NEC, genetically ≠ NET

b UNIVERSITÄT BERN

Classification of NET

- 1. Diagnosis, grading and staging
- 2. Pancreas: Evidence for change of classification
- 3. Concept of NET G3
- 4. Outlook

Summary PanNET G3

- NET G3 and secondary NET G3 behave differently from NEC G3
- Important are
 - Ki-67
 - Differentiation by morphology
 - Genetic marks (DAXX/ATRX/(MEN1) vs. P53 RB)
 - Clinical history (progression from NET G1/G2)

- 1. Neuroendocrine Tumor, NET G1
- 2. Neuroendocrine Tumor, NET G2
- 3. Neuroendocrine carcinoma, NEC (small or large-cell)

- 1. Neuroendocrine Tumor, NET G1
- 2. Neuroendocrine Tumor, NET G2

- 3a. Neuroendocrine Tumor, NET G3
- 3b. Neuroendocrine carcinoma, NEC (small or large-cell)

- 1. Neuroendocrine Tumor, NET G1
- 2. Neuroendocrine Tumor, NET G2
- 3a. Neuroendocrine Tumor, NET G3
- 3b. Neuroendocrine carcinoma, NEC Differentiation (small or large-cell)

- Neuroendocrine Tumor, NET/G1
- Neuroendocrine Tumor, NET G2

- 3a. Neuroendocrine Tumor, NET/G3
- 3b. Neuroendocrine carcinoma, (NEC) Differentiation (small or large-cell)

Grading

<3% MIB <2 Mitosis

- Neuroendocrine Tumor, NET/G1
- Neuroendocrine Tumor, NET G2
- 3a. Neuroendocrine Tumor, NETAG3

(small or large-cell)

Grading

<3% MIB <2 Mitosis

3b. Neuroendocrine carcinoma, NEC

+TNM Staging

Concept of NET G3

UNIVERSITÄT Bern

- Genetically and morphologically group of well differentiated NET
- 2. Clinically less aggressive compared to NEC
- 3. Probably less responsive to Cisplatin than NEC
- 4. Clinical trials needed to determine optimal treatment
- Concept will most likely be implemented in GI (and lung) NET

Concept of NEN:

UNIVERSITÄT

Staging

Future classification by Expression u^b **Genetics/ Epigenetics?**

UNIVERSITÄT

pNET, **RNA** expression profiles: 4 Subgroups

pNET, miRNA expression profiles: 2 Subgroups

pNET, **Methylation data**

NEN treatment development: Needs

b UNIVERSITÄ RERN

Collaborations across institutions and disciplines

Clinical trials / follow-up of patients

BIO banks

