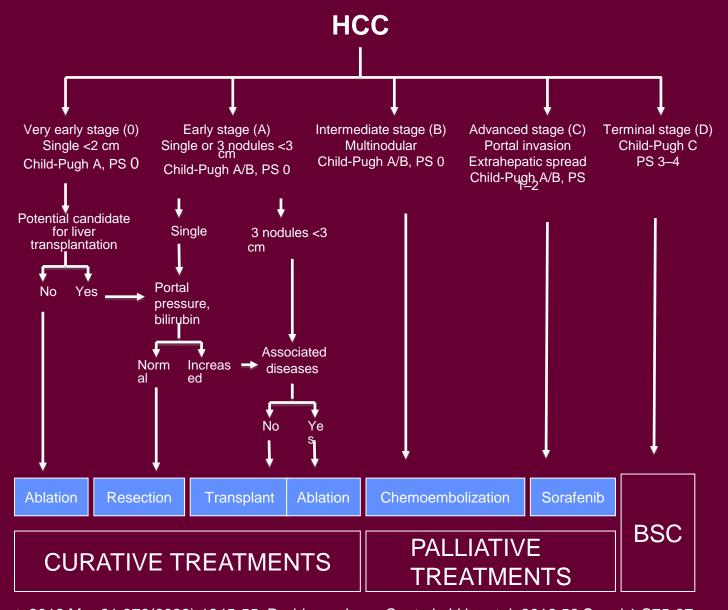
Tandem talk HCC 2. locoregional treatment "TACE or TARE"

C. Verslype MD, PhD

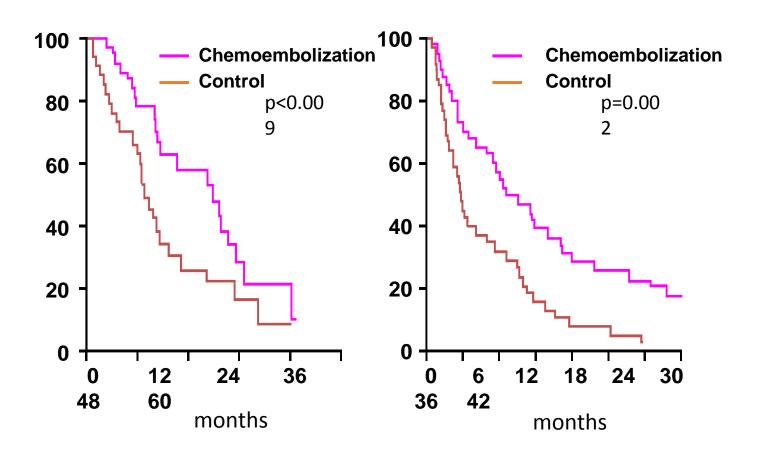

Hepatology – Digestive Oncology

University Hospitals Leuven, Belgium

C. Verslype received funding from:

Bayer Ipsen **Novartis** Pfizer Sirtex

BCLC staging and treatment strategy

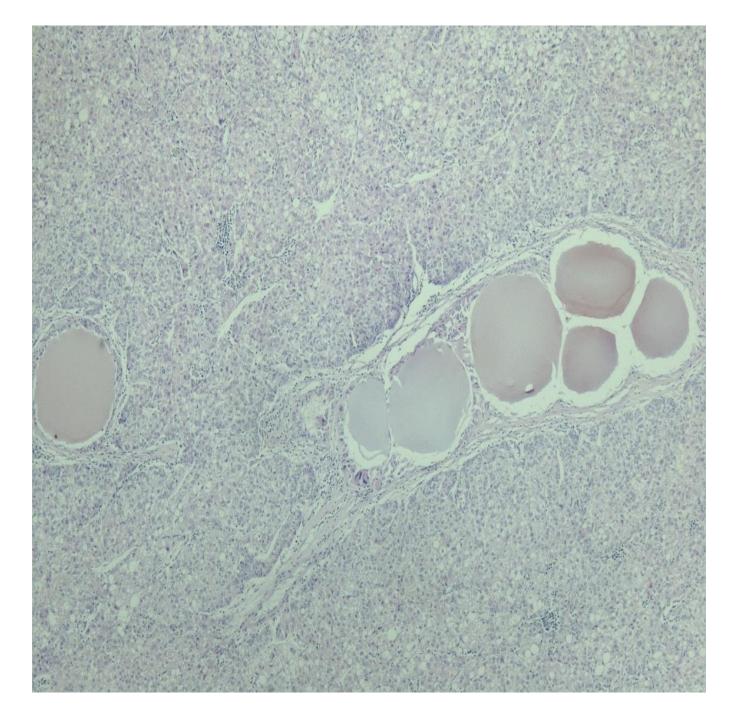


- 1. TACE
- 2. TACE vs. TAE
- 3. TACE +/- sorafenib
- 4. TARE
- 5. TARE vs. TACE
- 6. TARE +/- sorafenib

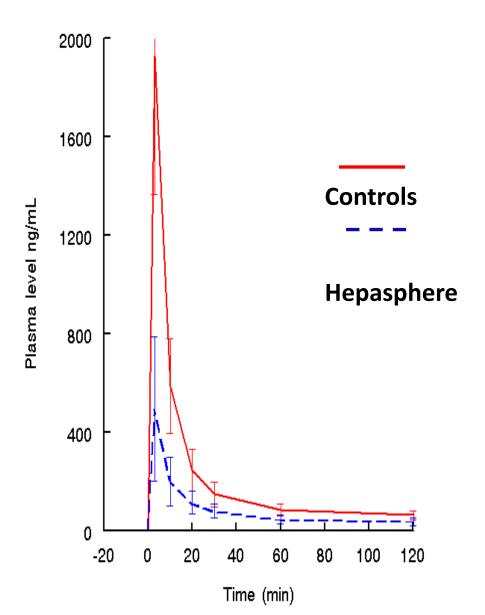
TACE

- standard of care for intermediate stage HCC: large or multinodular HCC limited to the liver, patent liver vessels and preserved liver function
- conventional TACE: anticancer-in-oil emulsion followed by embolic agents, but inconsistency in technique and treatment schedules
- recent developments:
 - superselective injection
 - drug-eluting beads

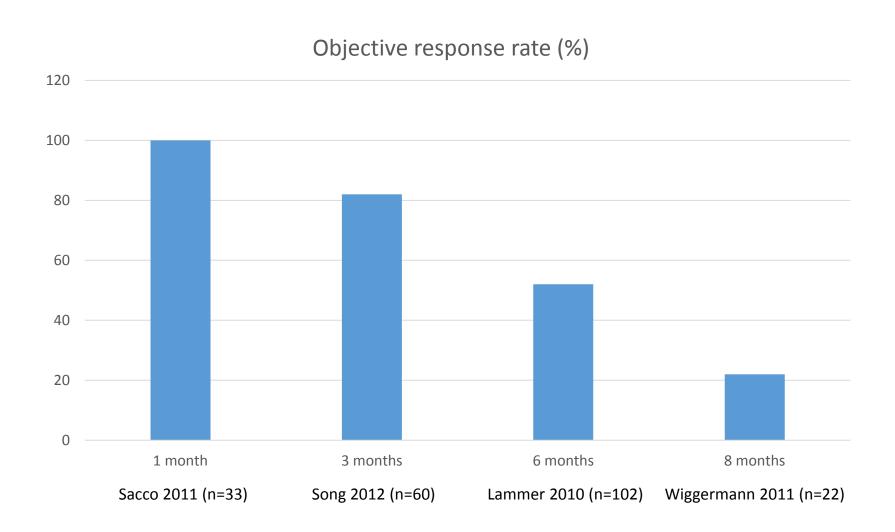
TACE: Overall survival



Efficacy of Selective Transarterial Chemoembolization in Inducing Tumor Necrosis in Small (<5 cm) Hepatocellular Carcinomas


Rita Golfieri, Alberta Cappelli, Alessandro Cucchetti, Fabio Piscaglia, Maria Carpenzano, Eugenia Peri, Matteo Ravaioli, Antonia D'Errico-Grigioni, Antonio Daniele Pinna, and Luigi Bolondi

	% Necrosis
Lesions < 2 cm	59,6 %
Lesions 2,1 - 3 cm	68,4 %
Lesions > 3 cm	76,2 %
- Superselective TACE	91,8%*
- Lobar TACE	66,5 %


^{*} p = 0.038

Drug eluting beads: Doxorubicin levels

DEB-TACE: Timing of evaluation of response in different studies

Downstaging of HCC beyond conventional liver transplantation criteria

Ref.	N (criteria)	Bridging treatment	Down- staged	Trans- plant	Recurrence free survival after LT	ITT Survival	Survival (after LT)
Yao (2008)	61 > MC, UCSF	TACE, RFA, resection	43/61 (71%)	35 (67%)	92% at 2 yr	69% at 4 yr	92% at 2 year
Jang (2010)	386 > MC	TACE	160/386 (41.5%)	37 (10 %)	66.3 % at 5 yr	NA	54.6% at 5 yr

Poor outcome: no response to therapies high AFP (> 400 ng/ml, rise in AFP > 15 ng/ml/month)

2. TACE vs. TAE

DEB-TACE vs. bland embolization (TAE)

Intermediate stage HCC

	Number of patients	Partial response at 6 months (%)	ТТР	Reference
DEB-TACE	41	46.3	42.4 ± 9.5 weeks	Malagari 2010
TAE	43	41.9	36.2 ± 9.0 weeks	

p = 0.008

Early stage HCC (Child A, lesion size 32 mm ± 15.4, prior to liver transplant)

	Number of patients	Complete histological necrosis (%)	Reference
DEB-TACE	8	77	Nicolini 2010
TAE	8	27*	

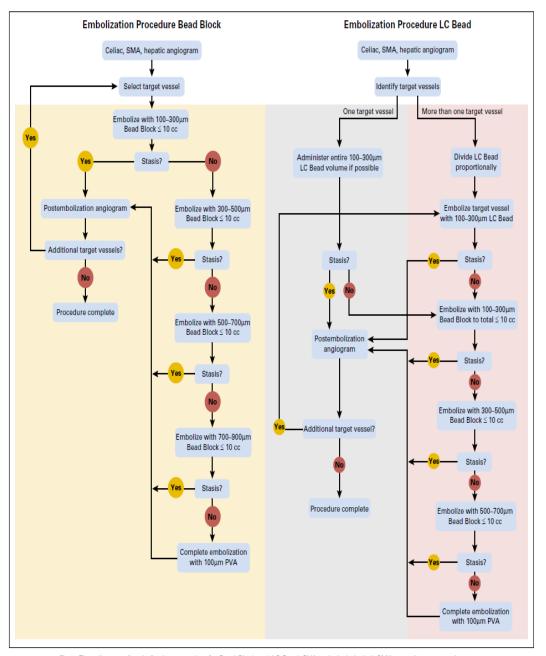
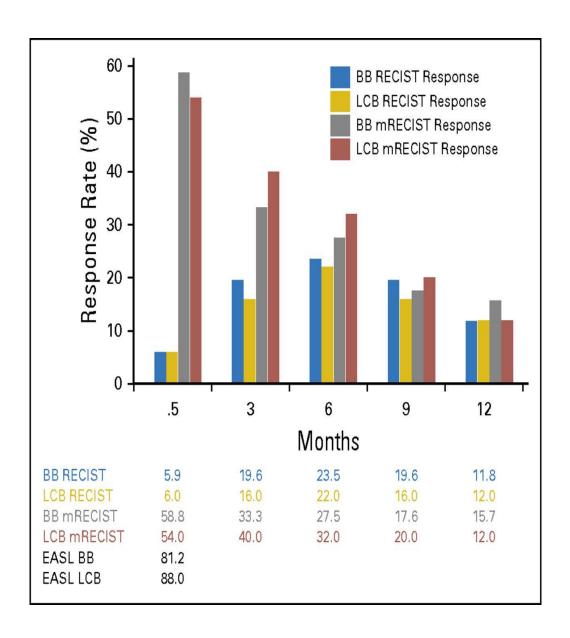
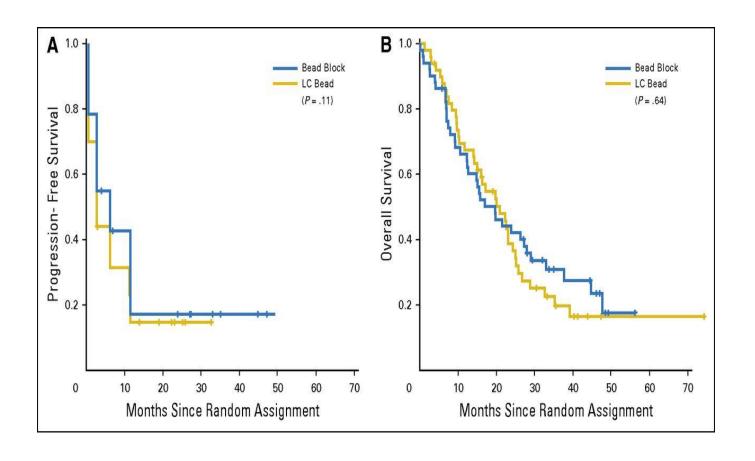
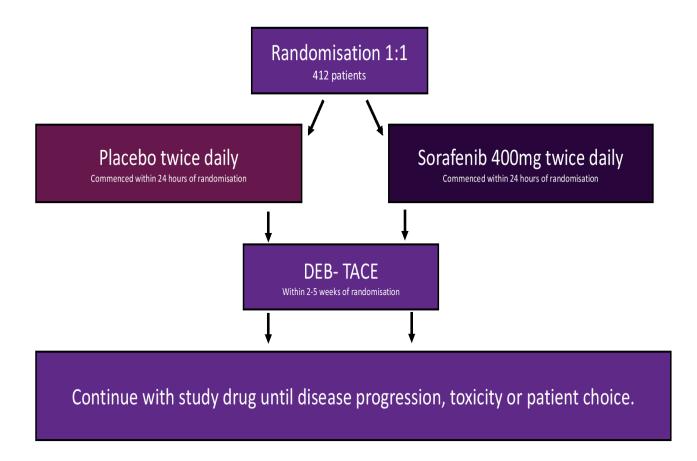



Fig 1. Flow diagram of embolization procedure for Bead Block and LC Bead. PVA, polyvinyl alcohol; SMA, superior mesenteric artery.


Characteristic	Patients Receiving Bead Block (n = 51)	Patients Receiving LC Bead (n = 50)
Age, years (± SD)	68.33 (± 9.72)	65.52 (± 11.82)
> 65, No. (%)	22 (43)	21 (42)
Male sex, No. (%)	37 (73)	41 (82)
Race, No. (%)		
White	41 (80)	38 (78)
Asian	7 (14)	6 (12)
Black	3 (6)	5 (10)
Etiology, No. (%)		
Hepatitis B	8 (17)	7 (14)
Hepatitis C	15 (29)	15 (30)
Alcohol	8 (17)	10 (20)
Multiple	6 (12)	5 (10)
Prior therapy, No. (%)*	13 (25)	16 (32)
Staging, No. (%)		
Okuda stage		
Stage I (0)	39 (76)	43 (86)
Stage II (1 or 2)	12 (24)	7 (14)
Child's Pugh score		
A (score 5-6)	41 (80)	45 (90)
B (score 7-11)	10 (20)	5 (10)
BCLC stage		
Early stage (A)	10 (20)	12 (24)
Intermediate stage (B)	22 (43)	23 (46)
Advanced stage (C)	19 (37)	15 (30)
Lesion characteristic, No. (%)		
Single	12 (24)	12 (24)
≤ 3	10 (20)	7 (14)
Multifocal	29 (57)	31 (62)
Mean diameter of lesion ± SD, cm	4.7 ± 3.7	4.3 ± 3.1
Median, cm (range)	3.4 (0.7-16.9)	3.5 (0.8-16.9)
Mean sum of diameters ± SD, cm	8.7 ± 4.5	10.8 ± 6.1
Median sum of diameters, cm (range)	7.7 (1.1-21.2)	8.7 (0.8-27.3)
ECOG PS, No. (%)		
0	44 (86)	43 (86)
1	7 (14)	7 (14)
Portal vein involvement, No. (%)	13 (25)	6 (12)
Extrahepatic disease, No. (%)	20 (39)	21 (42)

tumor burden or systemic therapy.

Karen T. Brown et al. JCO 2016


Progression-free survival and Overall Survival For TAE versus TACE

Karen T. Brown et al. JCO 2016

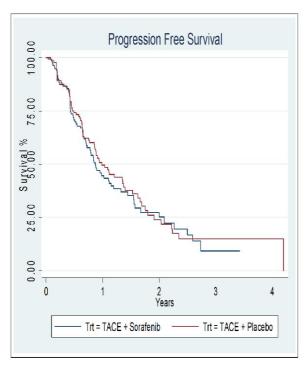
3. TACE +/- sorafenib

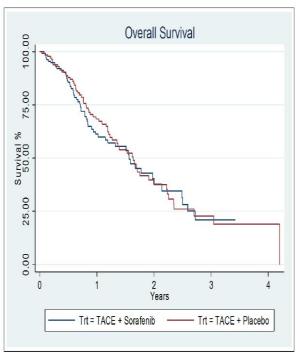
TACE-2 study: DEB-TACE +/- Sorafenib

Patients

	TACE + Sorafenib (143)	TACE + Placebo (143)	Overall (286)
Sex			, i
Male	129 (87.8)	129 (87.8)	258 (87.8)
Female	14 (12.2)	14 (12.2)	28 (12.2)
Age (years)	66 (57, 71)	69 (63, 74)	67 (60, 73)
ECOG			
0	87 (59.2)	82 (55.8)	169 (57.5)
1	51 (34.7)	57 (38.8)	108 (36.7)
Unknown	9 (6.1)	8 (5.4)	17 (5.8)
Cirrhosis			
No	24 (16.8)	24 (16.8)	48 (16.8)
Yes	116 (81.1)	113 (79.0)	229 (80.1)
Aetiology of Cirrhosis			
Нер В	15 (10.5)	15 (10.5)	30 (10.5)
Нер С	28 (19.6)	26 (18.2)	54 (18.9)
Alcohol	51 (35.7)	48 (33.6)	99 (34.6)
Other	41 (28.7)	45 (31.5)	86 (30.1)

Treatment


	TACE + Sorafenib (147) N (%)	TACE + Placebo (147) N (%)	Overall (294) N (%)
No. TACE procedures			
0	17 (11.6)	16 (10.9)	33 (11.3)
≥1	130 (88.4)	131 (89.1)	261 (88.7)
Sorafenib (av. dose (mg))	649 (244, 800)	800 (757, 800)	800 (370, 800)


Median treatment duration (months): Sorafenib: 5.9 months, Placebo:7.7 months

Response

Best Response (RECIST)	TACE + S (147)	TACE + P (147)	Overall (294)
	N (%)	N (%)	N (%)
Complete Response (CR)	5 (3.4)	5 (3.4)	10 (3.4)
Partial Response (PR)	46 (31.3)	41 (27.9)	87 (29.6)
Stable Disease (SD)	76 (51.7)	77 (52.4)	153 (52.0)
Disease Progression (PD)	10 (6.8)	12 (8.2)	22 (7.5)

TACE-2 study: DEB-TACE +/- Sorafenib

4. TARE

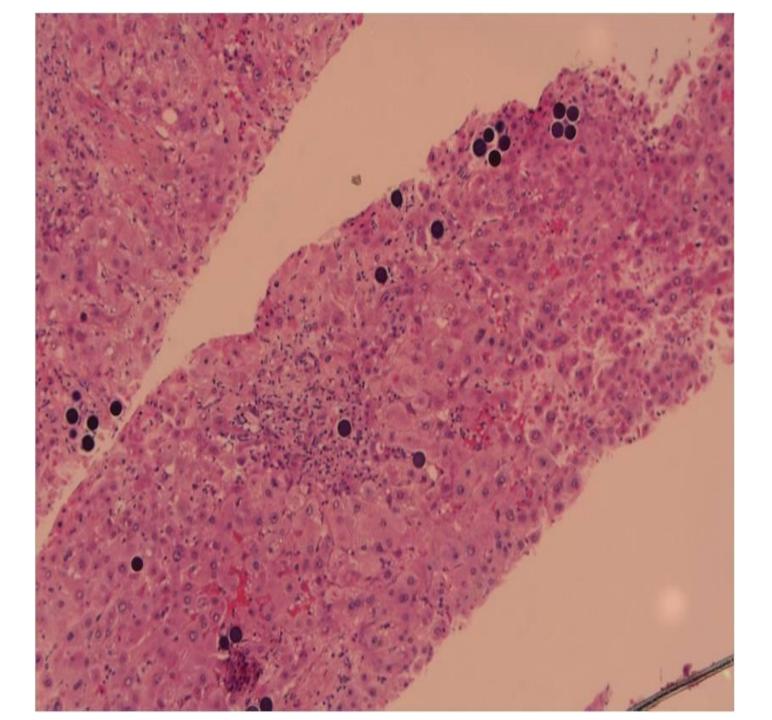


Table 6. Histologic Necrosis Stratified According to Pretreatment Size

Pretreatment Size	1-2.9 cm	3-5 cm	>5 cm	P Value
Total number Histologic necrosis, n (%)	9/38 (24)	17/38 (45)	12/38 (31)	
100% >50% <50%	8 (89) 1 (11) 0 (0)	11 (65) 2 (12) 4 (23)	4 (33) 6 (50) 2 (17)	0.199

Table 4. Histologic Necrosis Stratified According to Time Period between First Treatment and Explantation

Time from Treatment	<3 Months	3-6 Months	>6 Months	<i>P</i> Value
Total number Number of treatments to target	11/38 (29)	8/38 (21)	19/38 (50)	
lesion, median (range) Histologic necrosis, n (%)	1 (1-2)	1 (1-2)	1 (1-2)	
100%	4 (36)	6 (75)	13 (68)	0.015
>50%	1 (9)	2 (25)	6 (32)	
<50%	6 (55)	0 (0)	0 (0)	

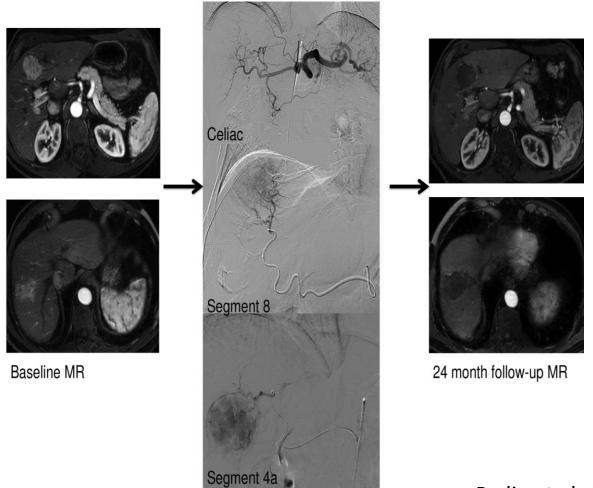
5. TARE vs. TACE

Performance of TARE vs. TACE in downstaging HCC

Table 1. Comparison of TARE Versus TACE.

TARE vs. TACE	Lewandowski et al. $(7)N = 43$ vs. 35	Carr et al. (8)N = 99 vs. 691	Kooby et al. \ddagger (9)N = 27 vs. 44	Salem et al. $(10)N = 123 \text{ vs. } 122$
Median OS (months)	35.7 vs. 18.7; P = 0.18	11.5 vs. 8.5;P < 0.05*	6 vs. 6; P = 0.74	20.5 vs. 17.4;P = 0.23
Radiographic response:				
WHO Response (%)	61 vs. 37; $P = 0.12$	41 vs. 60†	11 vs. 6; $P = 0.73$ §	49 vs. 36; $P = 0.10$
T3 to T2 (%)	58 vs. 31; $P = 0.023$	N/A	N/A	N/A
TTP (months)	33.3 vs. 12.8; $P = 0.005$	N/A	N/A	13.1 vs. $8.4;P = 0.023$
Tolerability		N/A		
Median hospitalization (days)	0 vs. 2; $P < 0.001$		1.7 vs. 5.0; $P = 0.05$	0 vs. 1.8; $P < 0.001$
Any complication (%)			44 vs. 70; $P = 0.05$	
Hyperbilirubinemia (%)	Grade 3/4: 26 vs. 7		>3 mg/dL: 4 vs. 16;P $= 0.1$	

^{*}OS between ⁹⁰Y and TACE became nonsignificant after adjusting for baseline bilirubin, presence of PVT, and baseline AFP level.

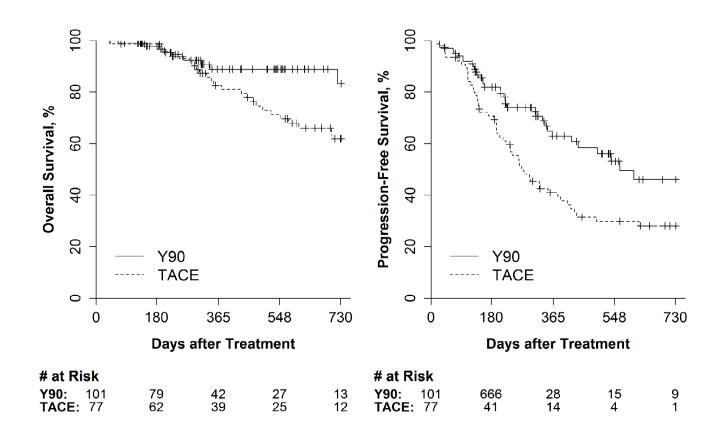

Lewandowski et al. Am J Transplant 2009 Carr et al. Cancer 2010 Kooby et al. J Vasc Interv Radiol 2010 Salem et al. Gastroenterology 2011

[†]Single dose of TARE to lobe with dominant disease burden; 43% bilobar in TARE. TACE q 8-10 weeks.

[‡]Sir-Spheres

[§]Radiographic response by RECIST at 3 months.

Segmental TARE vs. TACE: retrospective study


Padia et al. ASCO 2016, #4084

		TAC	E TAF	RE			TACE	•	
<u>Variable</u>		(N=77)	(N=101)	P-value	Variable		TARE		³ -value
Male sex		, ,	83 (82.2)	0.10	BCLC stage	А	29 (37.7)	32 (31.7)	0.93
Age, years		60	62	0.006		В	11 (14.3)	19 (18.8)	
		0 (0 0)	0 (0 0)			С	29 (37.7)	46 (45.5)	
Cirrhosis etiology	No cirrhosis Alcohol	\ /	2 (2.0) 32 (31.7)	0.51 0.32		D	8 (10.4)	4 (4.0)	
	HBV	, ,	` '	0.46	Any prior liver treatment	Resection	1 (1.3)	1 (1.0)	>0.99
	HCV	,	70 (69.3)	0.40	Any prior involved and inche	Ablation	١ /	12 (11.9)	0.51
	Other	5 (6.5)	11 (10.9)	0.43		Abiation	12 (13.0)	12 (11.9)	0.01
ECOG performance status	0	, ,	77 (76.2)	0.003	Within Milan criteria		65 (84.4)	52 (51.5)	<0.001
	2		19 (18.8) 5 (5.0)		Tumor characteristics	Size, mm	26	32	<0.001
	3	, ,	0 (0.0)			Infiltrative		30 (22.7)	0.010
Child-Pugh Class	A B C	40 (51.9) 30 (39.0) 7 (9.1)	66 (65.3) 31 (30.7) 4 (4.0)	0.053		PVT	1 (1.0)	24 (18.2)	<0.001 _

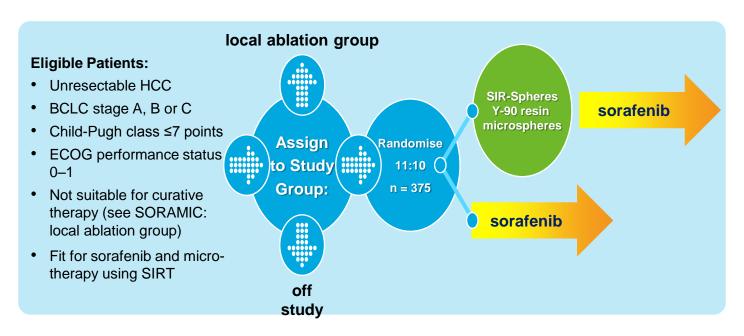
90-day toxicity (≥ grade 3)

Variable	(N=102)	(N=132)	P-value	Variable	No.	TACE	Y90	P-value	
Clinical toxicity				Per tumor response					
Fatigue	27 (26.5)	51 (38.6)	0.010	Response category CF	197	76 (73.8)	121 (92.4)	<0.001	
Pain	1 (1.0)	10 (7.6)	0.052	PF	26	19 (18.4)	7 (5.3)		
Post-embolization syndrome	9 (8.8)	3 (2.3)	0.040	SI	7	5 (4.9)	2 (1.5)		
Ascites	1 (1.0)	1 (0.8)	-	PE) 4	3 (2.9)	1 (0.8)		
Encephalopathy	1 (1.0)	0 (0.0)	-						
Abscess	0 (0.0)	0 (0.0)	-	Per patient response					
Liver failure	0 (0.0)	0 (0.0)	-	Response category CF	129	45 (58.4)	84 (84.0)	<0.001	
Ulcer	0 (0.0)	1 (0.8)	-	PF	31	20 (26.0)	11 (11.0)		
Death	0 (0.0)	0 (0.0)	-	SI	8 (6 (7.8)	2 (2.0)		
				PE) 9	, ,	3 (3.0)		
Biochemical toxicity						()	()		
Leukopenia	5 (5.0)	6 (4.6)	0.90						
Increased AST	8 (8.0)	4 (3.1)	0.22	CR = complete response	CR = complete response, PR = partial response, SD = stable disease, PD = progressive disease				
Increased ALT	3 (3.0)	2 (1.5)	0.55						
Increased total bilirubin	9 (9.0)	4 (3.1)	0.12		15.00	,			
Hypoalbuminemia	3 (3.0)	3 (2.3)	0.74						

Segmental TARE vs. TACE: Retrospective study

6. TARE vs. Sorafenib

Prospective Randomized Controlled Trials of SIR-Spheres Y-90 Resin Microspheres in the Treatment of Intermediate and Advanced HCC


- Three global pivotal studies evaluating SIR-Spheres Y-90 resin microspheres comprising >1,250 patients;
 - SARAH: 467 patients; 26 sites in France; recruitment completed March 2015
 - SIRveNIB: 360 patients; 23 sites in Asia Pacific; recruitment projected to complete during Q2 2016 (95% complete)
 - SORAMIC: 425 patients; 38 sites in European Union; recruitment completed February 2016

The SORAMIC Study (Palliative Group)

Can the overall survival of patients with HCC be improved by combining sorafenib with SIR-Spheres Y-90 resin microspheres?

Design: Prospective open-label, multi-centre, multi-national (European) RCT

Primary endpoint: Overall survival

Sponsor: University of Magdeburg

Pls: Prof. Peter Malfertheiner; Prof. Jens Ricke

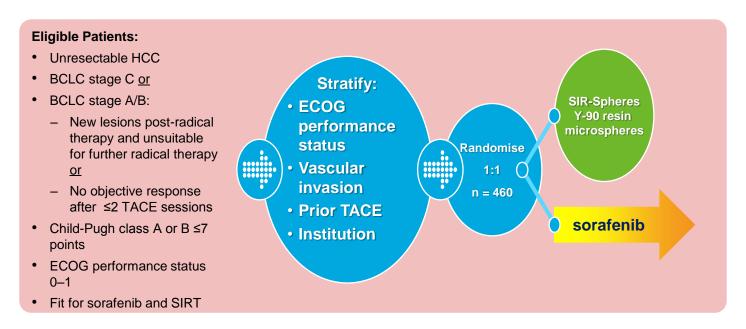
Status: Completed enrolment [February 2016]

Secondary endpoints:

Quality of lifeBiomarker analysis

Palliative group:

· Safety and toxicity


 Overall surval patients with or without PVT

The SARAH Study

To determine whether radioembolisation with SIR-Spheres Y-90 resin microspheres is more effective on overall survival in advanced HCC than sorafenib

Design: Prospective open-label, multi-centre, national (France) RCT

Primary endpoint: Overall survival

Sponsor: Assistance Publique – Hôpitaux de

Paris (AP-HP)

PI: Prof. Valérie Vilgrain

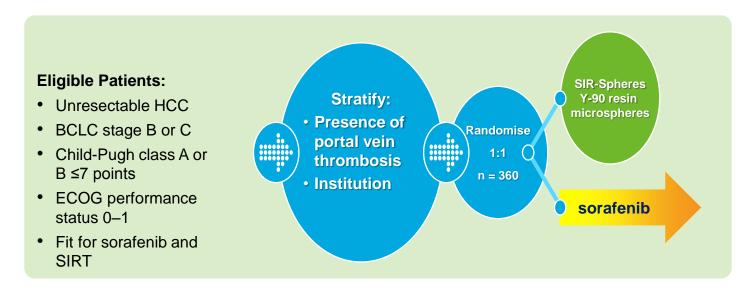
Status: Completed enrolment [March 2015]

Secondary endpoints:

Safety and toxicity

· Quality of life

· Healthcare costs


 Progression-free survival (PFS) at 6 months

The SIR veNIB Study

■ Asia-Pacific
 ■ Hepatocellular Carcinoma
 ► Trials Group

To determine the difference, if any, in overall survival between SIR-Spheres Y-90 resin microspheres and sorafenib in patients with unresectable HCC

Design: Prospective open-label, multi-centre, multi-national (Asia Pacific) RCT

Primary endpoint: Overall survival

Sponsor: Singapore General Hospital

in collaboration with

National Medical Research Council,

Singapore

National Cancer Centre, Singapore

Singapore Clinical Research Institute and the

Asia Pacific HCC Trials Group

PI: Prof. Pierce Chow

Status: https://cinicatiria/s.gov/ct2/show/NCT01135056; www.sirvenib.com
[85% complete at 30 June 2015]

Secondary endpoints:

- Progression-free survival (PFS) in the liver and at any site
- · Response rate
- Safety and toxicity
- · Quality of life
- · Liver resection rate
- Liver transplantation rate
- · Time to disease progression

Conclusions: locoregional treatment and intermediate/advanced HCC

- TACE is challenged as the standard of care for intermediate stage HCC
 - TAE may be as effective
 - Selective TARE is potentially more effective
- Sorafenib is challenged by TARE as the standard of care for advanced HCC
 - Large phase III studies have completed enrollment
- No role for sorafenib in combination with TACE
- Studies on combination of locoregional and immuno-oncology treatment are initiated