Does peri-operative nutritional support improve the outcome in GI cancer patients?

Dileep N Lobo
Professor of Gastrointestinal Surgery
University of Nottingham, UK

Disclosures

• B. Braun and Nutricia

Slide withheld at speaker's request

Malnutrition

"A state of nutrition in which a deficiency or excess (or imbalance) of energy, protein and other nutrients causes measurable adverse effects on tissue/ body structure and function and clinical outcome."

Causes of Undernutrition

✔ ConsciousnessDepressionAnorexia

Disease burden

Liver processing Jaundice

Effects of treatment

Poor diet – age, poverty, alcohol, drugs

Dysphagia

Obstruction Vomiting

Pancreatic insufficiency

Malabsorption

Increased metabolic demands (e.g. inflammation, infection, injury)

Effects of Malnutrition on Surgical Outcome

PERCENTAGE OF WEIGHT LOSS

A BASIC INDICATOR OF SURGICAL RISK
IN PATIENTS WITH CHRONIC
PEPTIC ULCER

HIRAM O. STUDLEY, M.D. CLEVELAND

Preop. weight loss	Postop. mortality
<20%	3.5%
>20%	33%

Starvation & Weight loss

(After Allison)

Days

Sarcopenia

- Reduced quantity of skeletal muscle
- Absolute muscle mass >2 SD below that typical of healthy adults
- Muscle loss may be masked by weight stability
- Muscle loss with fat gain sarcopenic obesity

Awad S, et al, Clin Nutr 2012

Cachexia

- Complex metabolic syndrome associated with underlying illness characterised by
 - Loss of muscle with or without loss of fat mass
 - Anorexia
 - Inflammation
 - Insulin resistance
 - Increased muscle protein breakdown

Cancer Cachexia

Prevalence of Cachexia

Malignancy	Patients with cachexia
Oesophagogastric cancer	85%
Pancreatic cancer	83%
Non-small cell lung cancer	61%
Small cell lung cancer	57%
Prostate cancer	56%
Colon cancer	54%
Non-Hodgkin's lymphoma (unfavourable)	48%
Sarcoma	40%
Acute non-lymphocytic lymphoma	39%
Breast cancer	36%
Non-Hodgkin's lymphoma (favourable)	31%

Undernutrition and the Cancer Patient

- More intensive treatment
- High dependency nursing
- Increased hospital stay
- Higher cost of care
- Increased morbidity and mortality
- Reduced quality of life

Outcome

- Malnutrition impairs outcome
- But, does nutritional support improve it??
- If so, how should we approach the problem in practice?

Integrated Nutrition 1

 Nutrition cannot be considered in isolation

 It will not compensate for inadequacies in other aspects of management

Integrated Nutrition 2

 It interacts with other treatments, e.g. drugs, fluid balance, which influence gastrointestinal function

• It must, therefore, be integrated into an overall protocol of care, e.g. ERAS programme

 It must be delivered by a team trained adequately in nutritional care as well as other aspects of perioperative management

Goals of Nutritional Therapy

- Acute/Short-term
 - Recognise risk of malnutrition
 - Preserve function
 - Minimise complications
 - Avoid nutrient overload
 - Correct mineral, micronutrient and electrolyte balance
- Medium to Long-term
 - Restore function
 - Improve quality of life

Nutrition Screening:

The Malnutrition Universal Screening Tool

MUST Score and Clinical Outcomes

The Real World

Breuer JP, et al, Zentralbl Chir 2013

How Much is Needed?

- Give $1.0 1.3 \times RMR$
 - Most patients need 30-35 Cal/kg/day
 - 50% non-protein energy requirement from fat and 50% from carbohydrate.
 - Protein requirements range from 1.2-1.5 g/kg/day.
- Permissive underfeeding?
 - 20 Cal with 1 g protein/kg/day.

Energy Expenditure in Patients

Enteral Nutrition

Pro

- Gut regulation of absorption
- Liver activation
- Protection of gut integrity & immunity
- Decreased cytokine and acute phase responses
- Relatively simple and cheap

Con

- Access insertion, misplacement, "fall out"
- Aspiration
- Poor absorption
- Diarrhoea
- Metabolic upset

Parenteral Nutrition

Pro

- Intestinal failure
- Severe acute pancreatitis
- Guaranteed delivery

Con

- Access related complications
- Line occlusion, misplacement, displacement
- Infections
- Metabolic complications
- Expense

EN vs. PN

If the gut works use it

 If intakes are inadequate or GI tolerance in doubt, supplement with PN

PN and EN are not mutually exclusive, they are complementary

Perioperative Management – Aims

- Improved function
- Improved survival and outcome
- Reduced complications
- Enhanced rate of recovery
- Reduced hospital stay and costs
- Early return to normal life

Perioperative Nutrition

- 2-3 weeks: Preoperative assessment
- 7-14 days: Preoperative nutrition
- 12 h preoperatively: Prolonged starvation not necessary
- During operation and immediate recovery
- Postoperatively until discharge from hospital
- Post discharge

What to Give?

- Macronutrients
 - Protein, CHO, Fat
- Micronutrients
 - Fat soluble vitamins: A, D, E & K
 - Water soluble vitamins: B group, C, etc.
- Electrolytes
 - Na, K, Ca, Mg, PO₄
- Elements
 - Fe, Zn, Cu, Se, Mn

Problems of Overfeeding Energy

- Ventilatory demands O₂ and CO₂
- Lipid
 - Liver dysfunction
 - Immunosuppression
- Carbohydrate
 - Re-feeding syndrome
 - Wernicke Korsakoff
 - Hyperglycaemia

What is the Refeeding Syndrome?

 A potentially lethal condition characterised by severe fluid and electrolyte shifts associated with metabolic abnormalities in malnourished patients undergoing oral, enteral or parenteral refeeding.

Interventions for Cachexia

Drug	Mode of action	Effect	Side-effects
Steroids Megesterol acetate Medroxyprogesterone	Anabolic effects Appetite stimulants	Total weight gain due to increased fat mass and fluid retention. No increase in lean body mass. Increased sense of well-being	Diabetes Osteoporosis Mood swings Thromboembolism
NSAIDs	Inhibits prostaglandin production. Reduces REE and acute phase response	Total weight gain, reduced need for alternative analgesics, improved quality of life. No increase in lean body mass. Prolonged survival in one study	GI upset/haemorrhage
Cannabinoids	Appetite stimulant	Ineffective	Nausea/vomiting
Eicosapentaenoic acid (EPA) Fish oils	Inhibits NFkB Inhibits PIF Reduces pro-inflammatory cytokines	Increased lean body mass in pilot studies. Overall ineffective at increasing weight in large RCTs—possibly due to inability of patients to achieve target dose	Nausea, fishy taste/odour, GI upset
Pentoxifylline	Inhibits TNFα	Ineffective	
Thalidomide	Inhibits TNFα, Effect Th1 to Th2 shift. Inhibit NFκB	Weight stabilization. Attenuated loss of lean body mass. Trend towards prolonged survival	Rash, peripheral neuropathy, daytime somnolence, constipation

Gordon JN, et al, QJM 2005

Multidisciplinary Approach

Multidimensional Assessment

- Medical & treatment history
- Nutritional history
- Symptoms: physical & psychological
- Physical examination
- Laboratory tests
- Anthropometry/body composition

Individualised Treatment Plan

- Manage treatable causes
- Nutritional counselling
- Artificial nutrition if appropriate
- Pharmacological support
- Physical therapy/exercise

Decision Making Process

- Individualised goals
- Define realistic outcomes
- Determine prognosis and antineoplastic treatment
- Discuss future challenges
- Consider patient & family attitudes
- Consider costs

		//N diet		Stan	dard d	iet		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD		Mean	SD		Weight	IV, Random, 95% CI	Year	
Daly et al.	18.8	11.1	41	20.4	9.6	44	3.1%	-1.60 [-6.03, 2.83]	1992	
Daly et al	16	0.9	30	22	2.9	30	6.8%			-
Senkal et al.	27	2.3	77	30.6	3.1	77	7.0%	-3.60 [-4.46, -2.74]	1997	-
Gianotti et al.	16.1	6.2	87	19.2	7.9	87	5.6%	-3.10 [-5.21, -0.99]	1997	
Mc Carter et al.	17	3.7	13	13	1.7	11	5.4%	4.00 [1.75, 6.25]	1998	
Di Carlo et al.	16.3	6.2	33	17.8	6.9	35	4.4%	-1.50 [-4.61, 1.61]	1999	
Braga et al	11.1	4.4	102	12.9	4.6	104	6.6%	-1.80 [-3.03, -0.57]	1999	
Senkal et al	22.2	4.1	78	25.8	3.8	76	6.6%	-3.60 [-4.85, -2.35]	1999	-
Jiang et al.	13	2.5	60	14.5	3	58	6.9%	-1.50 [-2.50, -0.50]	2001	
Erdem et al.	15	3	15	18.3	5	10	4.0%	-3.30 [-6.75, 0.15]	2001	
Braga et al.	9.5	2.9	50	12	4.5	50	6.4%	-2.50 [-3.98, -1.02]	2002	
Guoxiang et al.	10.6	1.2	20	11.7	2	20	6.8%	-1.10 [-2.12, -0.08]	2005	
Xu et al.	9	2.2	30	12	3.7	30	6.3%	-3.00 [-4.54, -1.46]	2006	
Lobo et al.	20.5	13.1	54	20.6	12.6	54	2.8%	-0.10 [-4.95, 4.75]	2006	
Klek et al	12.9	8	92	12.4	5.9	91	5.7%	0.50 [-1.54, 2.54]	2008	
Klek et al.	13.1	4.1	52	12.4	3.9	53	6.3%	0.70 [-0.83, 2.23]	2008	+-
Okamoto et al.	23.8	16.6	30	25	10.6	30	1.7%	-1.20 [-8.25, 5.85]	2009	
Gunerhan et al.	16.54	14.83	13	14.22	9.12	11	1.0%	2.32 [-7.38, 12.02]	2009	
Sodergren et al.	15.5	14.82	23	16.5	6.37	21	1.8%	-1.00 [-7.64, 5.64]	2010	
Klek et al.	13.1	13.8	152	17.1	12.2	153	4.6%	-4.00 [-6.92, -1.08]	2010	
Total (95% CI)			1052			1045	100.0%	-1.88 [-2.91, -0.84]		•
Heterogeneity: Tau ² =	3.81: Ch	ni² = 123	3.03. df	= 19 (P	< 0.00	001): I	= 85%	•		
Test for overall effect:				(0.00	.,,	0010			-10 -5 0 5 10
. CC. 701 OTOIGH OHOOL	_ 0.00	ζ, σ.	-50.,							Favours IMN Favours Control

Palliative Measures

Stents

A Suggested Algorithm

Where is the Evidence?

The quality of evidence is still low and unconvincing

 Many shortcomings in these studies and subsequent meta-analyses

Systematic review of 15 studies with 3474
 patients that there is no evidence to support
 enteral or parenteral feeding after
 pancreatoduodenectomy.

Conclusions

Nutritional status is a prognostic factor

 Nutritional screening is essential in order to identify patients at risk

 Nutritional support is required if a longer period of inadequate oral intake has to be anticipated

Multimodal therapy is necessary for cancer cachexia

