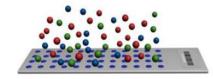

Hereditary CRC syndromes

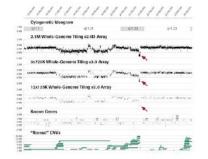
Judith Balmaña, MD Familial cancer program Medical Oncology Department University Hospital Vall Hebron Barcelona jbalmana@vhebron.net

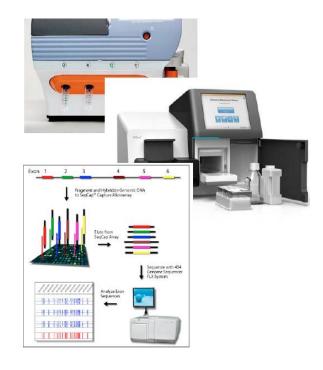
Slightly more than 100 years ago...

Dr. Aldred Scott Warthin

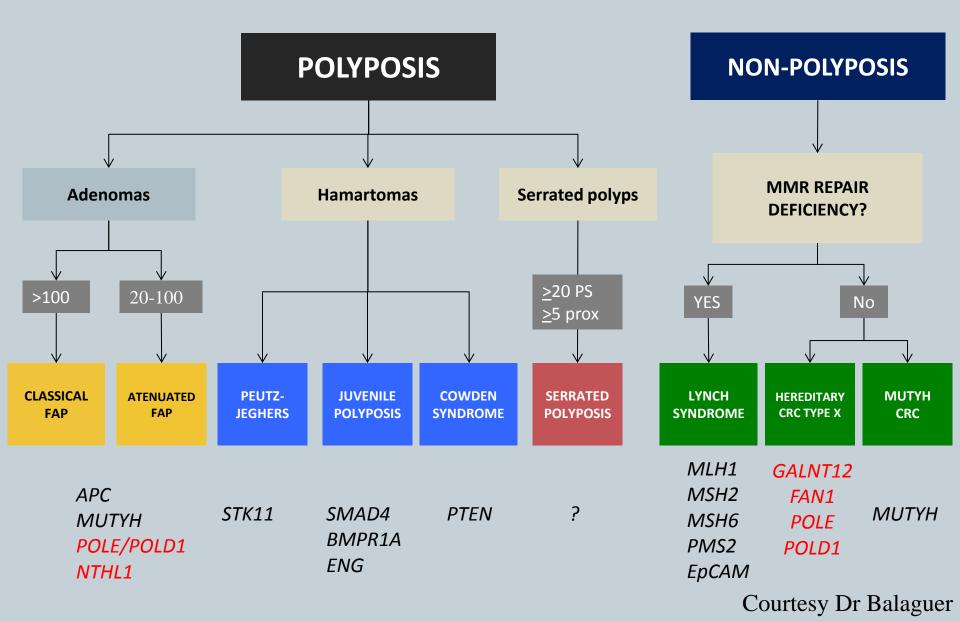


Family G


Warthin, Arch Intern Med 1913



0	•	•	0	0	0		0	0		•	•	-
•	•	٢	•	0	0	0		0	0	•	0	
٥	0	٠	•		0	0	0	0		•	0	
	6	0	•	0	0	•	0	0	0	•	0	I



Why Would We Consider Germline Genetic Testing in Patients With Cancer?

- Estimation of the **cumulative risk** of cancer in an individual and/or her family
- Identification of individuals at sufficient risk to consider enhanced screening or prevention strategies
- Identification of tumors that might respond to specific therapies

Hereditary CRC: genetic heterogeneity

A 2016 clinical case...

A 43 year old patient with stage II right-sided CRC. The pathology report described that her tumor had <u>MSI and</u> <u>loss of MLH1 protein expression</u>. A tumor genetic profiling analysis revealed a <u>hypermutated phenotype</u> (1000 somatic mutations). The patient reports a family history of endometrial cancer in her mother. She is seeking advice to find out if her children must undergo surveillance with colonoscopy

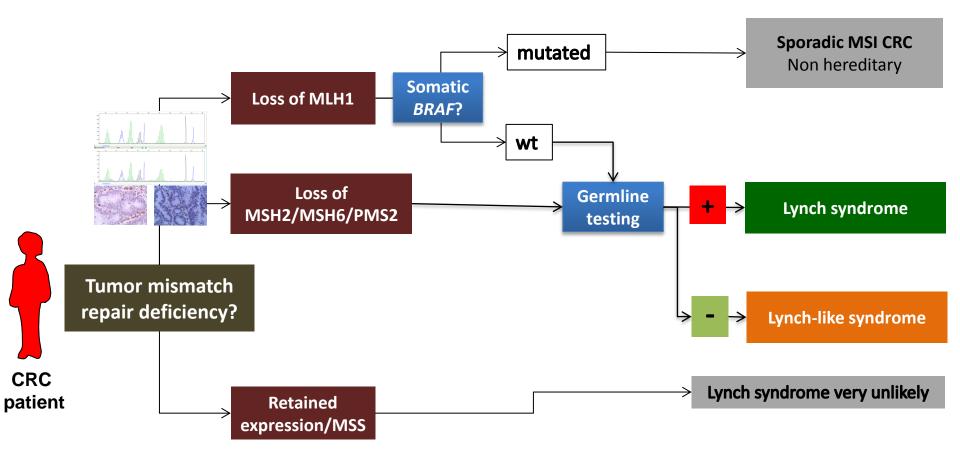
- ✓ Is this suspicious of a hereditary cancer syndrome?
- ✓ If so, what other molecular/genetic tests would you recommend to her?
- ✓ What type of surveillance would you recommend in her and her close family members?

MSI and loss of expression of MLH1

- ✓ MSI is present in 10-15% of sporadic CRC, mainly due to somatic tumor *MLH1* promoter methylation
- ✓ MLH1 promoter methylation is correlated with tumor BRAF V600E mutation

CRC cases	BRAF mutation	MLH1 "C" region methylation
550 MMR germline mutation +	1.4% (0.06-3%)	6%
1623 MMR mutation – with MSS	5% (4-7%)	NA
332 MMR germline mutation – with MSI/ MLH1 expression loss	63.5% (47-79%)	47% (P<0.0001)

Parsons, J Med Genet 2012


Immunostaining interpretation

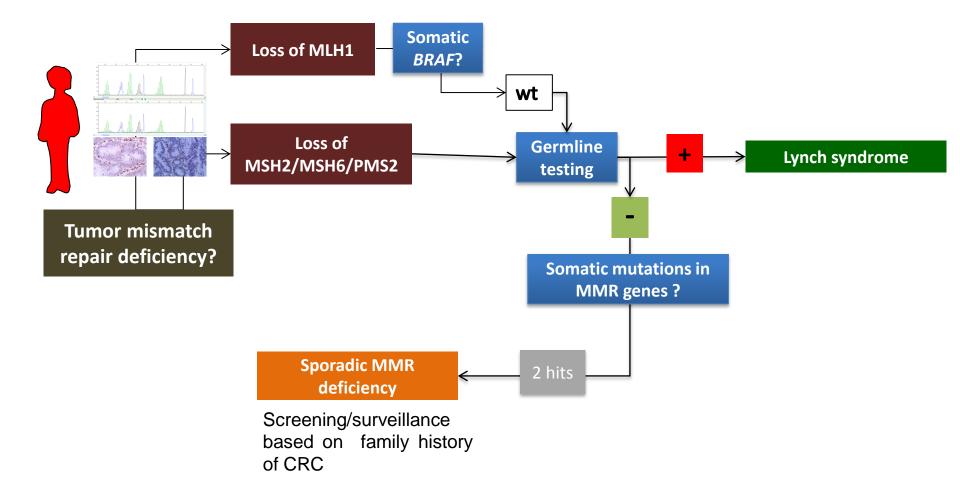
Combinatorial IHC testing of all four MMR proteins can provide an **indication of the specific MMR gene that is most likely to contain a pathogenic germline mutation**:

- Dual loss of MLH1 and PMS2 protein expression suggest a germline mutation within *MLH1* as the PMS2 protein is not stable in the absence of MLH1.
- IHC loss of both MSH2 and MSH6 staining implies a germline mutation within *MSH2*.

	Germline	Immunostaining					
	mutated gene	MSH2	MSH6	MLH1	PMS2		
MSH2	MSH2	-	-	+	+		
MSH6	MSH6	+	-	+	+		
	MLH1	+	+	-	-		
MLH1 PMS2	PMS2	+	+	+	-		

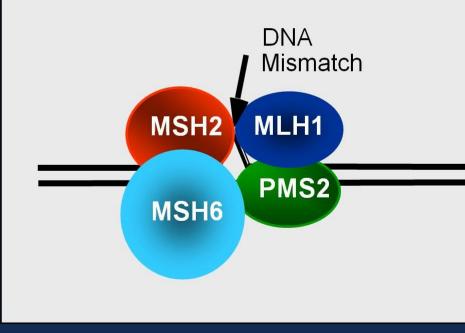
Non-polyposis CRC: Universal MMR deficiency testing

Hampel et al. NEJM 2005 Moreira L, Balaguer F *et al*. JAMA 2012 Moreira et al. Cancer 2015

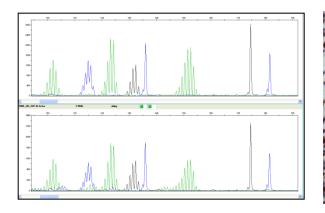

Lynch-like syndrome: what is the cause?

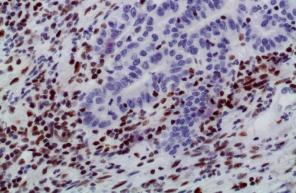
- 1. "Cryptic" germline mutations in the 4 DNA MMR genes in actual Lynch syndrome patients (ie, mutations were present, but not detected) EPCAM gene (which is immediately upstream of MSH2) (Ligtenberg et al. Nat Genet 2009) Other undiscovered genes??
- 2. Some pathologic process other than a germline mutation or methylation of a DNA MMR gene that can produce a CRC with MSI.

Biallelic somatic mutations of MMR genes (Sourrouille, F et al. Fam Cancer 2013)


Study	Ν	Tumor types	Cohort	Genes analyzed	Methods	Frequency of 2 somatic mutations
Mesenkamp et al. Gastroenterology 2013	25	23 CRC 2 EC	Clinic-based	MLH1 MSH2	Sanger LOH	13/25 (52%)
Haraldsdottir S et al. Gastroenterology 2014	32	18 CRC 14 EC	Population-based	MLH1 MSH2 MSH6 PMS2	Coloseq (NGS) LOH	22/32 (69%)
Geurts-Giele et al. Jounal of Pathology 2014	40	35 CRC 4 EC 1 ovary	Clinic-based Population-based	MLH1 MSH2 MSH6 PMS2	NGS LOH	26/40 (65%)

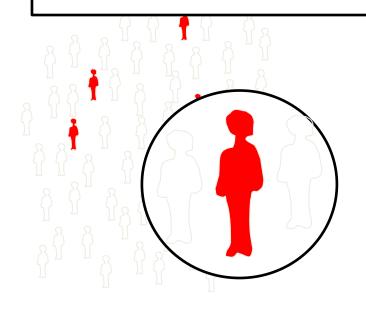
Non-polyposis CRC: Updated universal MMR deficiency testing


Etiologies of Mismatch Repair Deficiency (MMR-d)

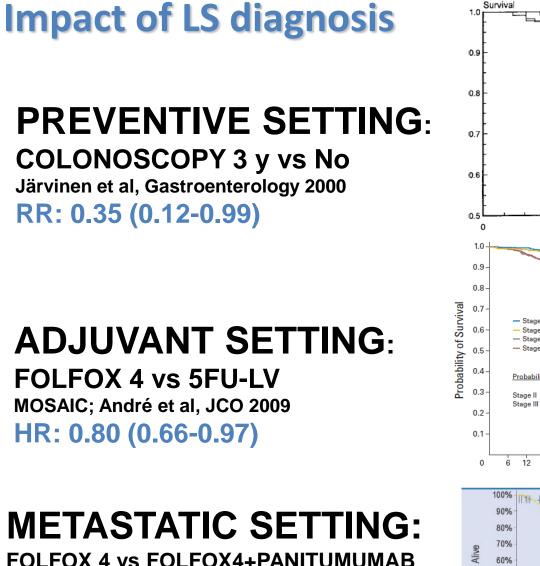

- Somatic
 - BRAF mutation
 - MLH1 promoter hypermethylation
 - Mutations in DNA MMR genes
 - "Lynch-like or Tumor Lynch"
- Germline mutations in DNA MMR Genes
 - Lynch Syndrome

Lynch syndrome (formerly known as HNPCC)

- Most common hereditary CRC syndrome (3-5%)
- Cause:
- Germline mutations in MMR genes (MLH1/MSH2/MSH6/PMS2/Epcam)
- Autosomal dominant pattern of inheritance (50% probability of transmission)
- **<u>Clinical phenotype</u>**: cancer predisposition (early-onset, but not always.....)
 - Lifetime risk of CRC: 25-80%
 - Lifetime risk of endometrial cancer: 20-70%
 - Others: stomach, urinary tract, ovary, small bowel
- <u>Tumor phenotype</u>:
 - Characteristic pathology: tumor infiltrating lymphocytes, mucinous features
 - Microsatellite instability (MSI) (PCR-based assay)
 - Loss of protein expression (immunohistochemistry)

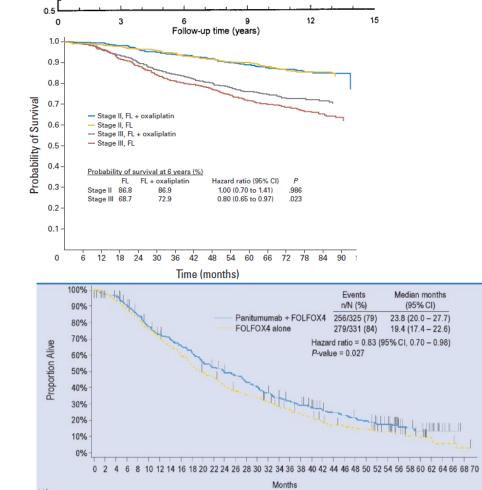


Hampel et al. NEJM 2005 Piñol et al. JAMA 2005 Bessa X et a. JCO 2011


Lynch syndrome: Underdiagnosis

Main cause of underdiagnosis: absence of clinical suspicion

- <50% of cancer centers perform IHC testing or MSI routinely (*Beamer et al. JCO 2012*)
- Family history remains largely unrecognized (Grover et al. CGH 2004; Singh et al. CGH2010)
- Lynch syndrome often does not show a significant family history


- Prevalence in <u>general population</u>: 1/1000-1/2000
- Prevalence in <u>CRC patients</u>: 1-5/100
- World incidence: 30.000 new cases/year

(wild type KRAS)

PRIME; Douillard et al, ASCO 2013

HR: 0.83 (0.70- 0.96)

screening, mutation + (n=44)

(n=119)

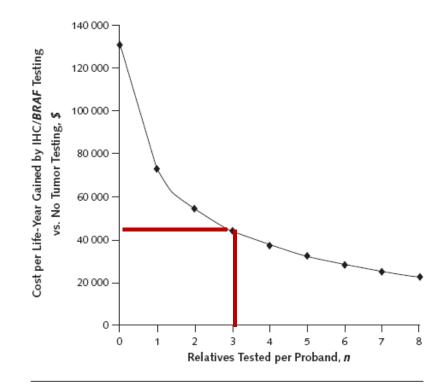
(n=46)

0.922

0.904

0.782

0.739


screening, all (n=133)

control, mutation

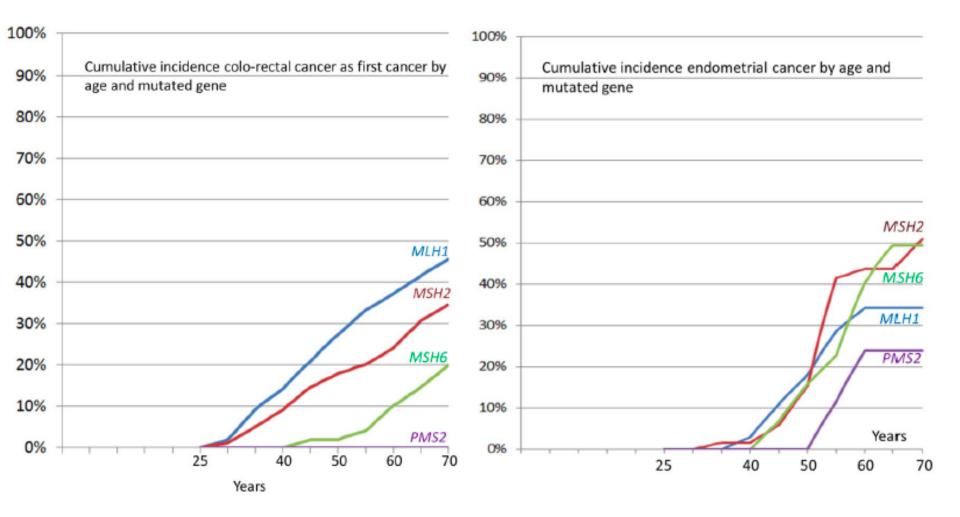
ontrol, all

Cost-effectiveness

Strategy	Discounted Life-Years per Person	Discounted Cost per Person, \$	Colorectal Cancer Cases (Deaths) per 100 000 Persons, n (n)	Endometrial Cancer Cases (Deaths) per 100 000 Persons, n (n)	Ovarian Cancer Cases (Deaths) per 100 000 Persons, <i>n</i> (<i>n</i>)	Discounted Incremental Cost per Life-Year Galned, \$ †	Discounted Incremental Cost per Life-Year Gained, Excluding Clinical Criteria Strategies, \$t
IHC with BRAF testing	23.7319	19 381	21 753 (5080)	9819 (1645)	1827 (961)	-	36 200
Up-front germline testing	23.8047	33 492	19 736 (4320)	9694 (1624)	1803 (948)	293 000	293 000

Among tumor-testing strategies, IHC with *BRAF* testing had an incremental cost-effectiveness ratio <\$50 000 per life-year gained when 3 relatives but not when 2 relatives were tested per proband. IHC = immunohistochemistry.

Ladabaum, Arch Int Med 2011

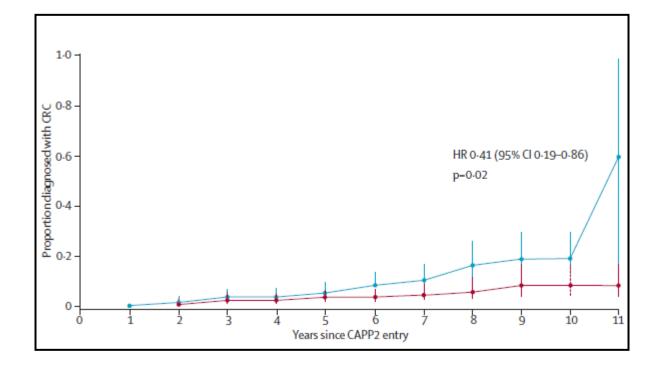

Three critical current clinical questions in LS

• What is the **cumulative risk** by age to first cancer?

In which organs are first cancers most likely to occur?

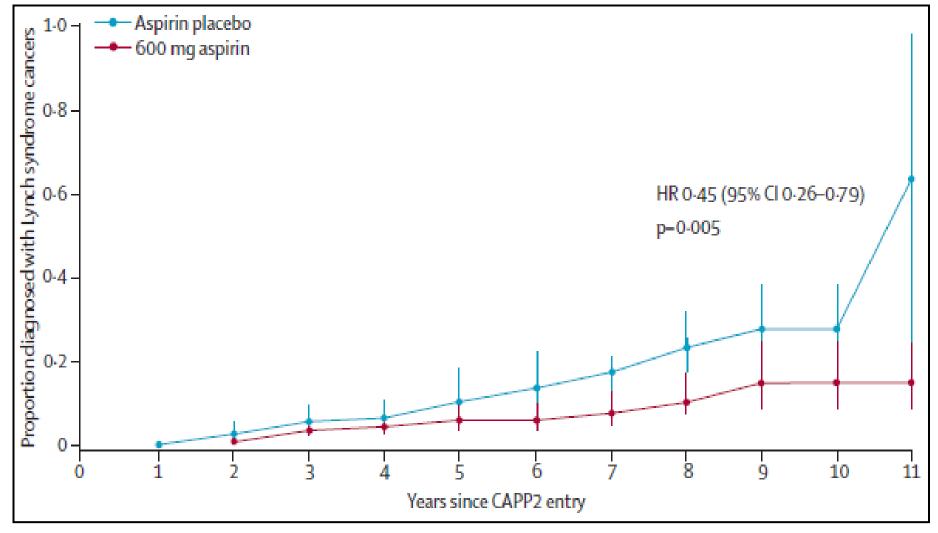
• What are the **outcomes** for these cancers?

1942 mutation carriers undergoing prospective cancer surveillance

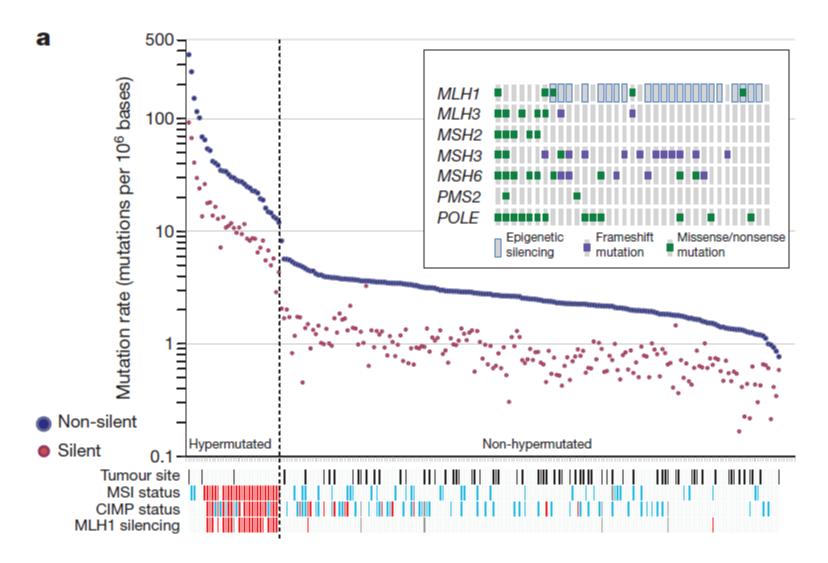

Moller et al, Gut 2015

Time since last colonoscopy						
mean	median					
32 months	27 months (7-123)					
Cumulative % of CRC since last colonoscopy						
Up to 12 months	Up to 24 months					
6%	31%					

Table 75-year and 10-year crude survival after first cancerdiagnosed by cancer type in Lynch syndrome (LS) patients withoutprior or prevalent cancer at first colonoscopy


Group	Number cases	5-year survival (95% CI)	10-year survival (95% CI)
Any cancer	301	90% (86 to 93)	87% (83 to 91)
Colorectal cancer	140	94% (90 to 98)	91% (84 to 95)
Endometrial cancer	71	98% (88 to 99.8)	98% (88 to 99.8)
Ovarian cancer	19	88% (60 to 97)	89% (60 to 97)
Upper GI cancer	24	58% (36 to 75)	53% (31 to 71)
Urinary tract cancer	17	82% (51 to 93)	73% (42 to 89)

CAPP2 Study – Aspirin in Lynch S Colon Cancer Risk


Burns J et al, Lancet (2011)

CAPP2 Study – Aspirin in Lynch S Colon Cancer Risk

Burns J et al, Lancet (2011)

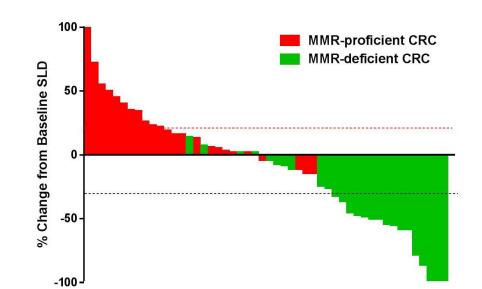
TCGA COLON AND RECTAL CANCER

Nature, 2012

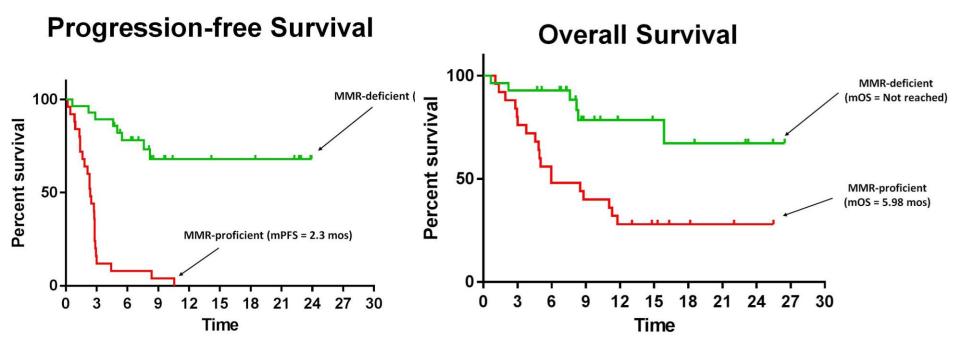
KEYNOTE-016

Study Design

(Colorectal	Cancers		Non-Colorectal Cancers
Defic Mismat	nort <u>A</u> cient in ch Repair =28)	<u>Cohor</u> Proficie Mismatch (n=2	nt in Repair	<u>Cohort C</u> Deficient in Mismatch Repair (n=30)


• Anti-PD1 (Pembrolizumab) – 10 mg/kg every 2 weeks

 Here we report and update from the original 13 CRC Cohort A patients reported at ASCO 2015



	MMR-deficient CRC	MMR-proficient CRC
Type of Response-no (%)	n=28	n=25
Complete Response	3 (11)	0 (0)
Partial Response	13 (46)	0 (0)
Stable Disease (Week 12)	9 (32)	4 (16)
Progressive Disease	1 (4)	11 (44)
Not Evaluable ¹	2 (7)	10 (40)
<i>Objective Response Rate (%)</i>	16 (57)	0 (0)
95% CI	39 - 73	0 -13
Disease Control Rate (%)	25 (89)	4 (16)
95% CI	73 - 96	6 - 35
Median Follow Up (mos)	9.3	6

Best Radiographic Response

Dung Le at 2016 ASCO

Take home messages

- MMR deficiency might be sporadic (biallelic somatic mutations, MLH1 hypermethylation), or hereditary (LS)
- MMR deficiency provides predictive information for therapeutic decision making
 - ✓ early stage:lack of efficacy of 5-FU
 - ✓ advanced setting: benefit of immune checkpoint blockade
- ✓ Rule out LS after identification of MMR deficiency:
 - cancer prevention is possible (second tumors and family members)
 - ✓ cost-effective
 - ✓ overall good prognosis