Endpoints and Novel Designs in the Era of Targeted Therapies

Daniel Sargent, PhD Professor of Biostatistics & Oncology Mayo Clinic

Endpoint Hierarchy

- True clinical efficacy measure
- Validated surrogate endpoint (Rare)
- Surrogate endpoint "reasonably likely to predict clinical benefit"
- None of the above: A correlate that is solely a measure of biological activity

Endpoints: Fit to purpose

Phase II goal: Go/No-go phase III decision

- Historically: Endpoint with good correlation with clinical benefit outcomes ok
- Reconsidered: If goal is successful phase III trial, more rigor in phase II endpoint is appropriate

Phase III goal: Agent approval
 Clinical benefit or validated surrogate
 Control point needed

Phase II endpoints

- Tumor response (RECIST)
 Patients live longer even without response¹
- Novel imaging
 - Cannot validate a new endpoint and a new therapy in the same trial
- PFS at an early time point
 Captures disease stabilization
 ¹Grothey JCO 2008

Patients without response benefit from better therapy IFL +/- Bev FOLFOX vs 5FU/LV

Grothey, JCO 2008

Phase III Endpoints: FDA Regulatory Standard
Safe and Effective
Effective (clinical benefit)

Live longer
Live better

 Live better very difficult to show in oncology

Surrogate validation: Requires meta-analysis

0.8

0.75

0.7

0.65

0.6

0.55

5 yr OS= 0.0002+0.998*3 yr DFS

Is PFS a Clinical Benefit Endpoint? Opinion: Pro

 "I have no problem accepting that, in a lethal disease such as metastatic cancer, delaying progression is a clinical benefit in itself, provided that the magnitude of the benefit is sufficient and the side-effect profile acceptable." R Pazdur, NCI Cancer Bulletin May 13, 2008

http://www.cancer.gov/ncicancerbulletin/NCI_Cancer_Bulletin_051308/page7

Merits of PFS as an endpoint

- Un-encumbered by cross-over
- Available more quickly than OS
- Variable demonstration of surrogacy for OS
 - Colon (before biologics)– Yes Buyse JCO 2007
 - Breast No Burzykowski, JCO 2008
 - Lung Unclear Buyse ASCO 2008

PFS vs. OS in modern First line colon cancer trials

- ARCAD database: Individual patient data from 22 First line trials, 1997-2006
- 16,762 patients
- 12/22 tested targeted therapies

Shi et al, JCO 2014 to appear

Trial level treatment effects: PFS vs. OS

Shi et al, JCO 2014 To appear

11

Post-progression challenges Out of protocol's control Perhaps unbalanced Some crossovers without prog • Same benefit in $\triangle PFS$, even if directly translates to $\triangle OS$, results in smaller HR • PFS: 6 mo v 9 mo: HR=0.66 • OS: 12 mo vs 15 mo: HR=0.80 15 mo vs 18 mo: HR=0.83 21 mo vs 24 mo: HR=0.875 Implication: PFS trials inherently underpowered for OS

12

Power for OS with 2-month PFS & OS Advantage

Impact of Post-Progression survival on surrogacy

SPP=Survival Post-Progression

Broglio, JNCI 2009

T MAYO CLINIC

Impact of Post-Progression survival on Surrogacy

OSHR

SPP=Survival Post-Progression

Broglio, JNCI 2009

PFS HR

PFS HR

PFS HR

PFS as a surrogate endpoint

Is PFS a surrogate for OS in cancer?

- When no effective 2nd line rx: Yes
- When effective 2nd and later lines rx: likely no
- As survival beyond progression lengthens, surrogacy becomes difficult
 - Attenuated HR
 - Additional noise

 Only currently realistic endpoint for phase III trials in diseases with multiple lines of therapy

Biomarkers: Predictive Marker

Single trait or signature of traits that separates different populations with respect to the outcome of interest in response to a particular (targeted) treatment

Enrichment Design

- Screens patients for the presence or absence of a marker or a panel of markers, AND
- Only includes patients in the clinical trial who either have or do not have a certain marker characteristic or profile

 Paradigm: Not all patients will benefit from the study treatment under consideration

• Understand the safety, tolerability and clinical benefit of a treatment in the subgroup of the patient population defined by a specific marker status

18

Enrichment Designs

Appropriate when:

- Mechanism of drug action is known
- Assay is reliable
- Compelling preliminary evidence suggesting that patients with or without that marker profile do not benefit from the treatments in question

 Needs fewer overall randomized patients compared to an "untargeted" design

Trials in targeted populations

Gains in efficiency depend on marker prevalence and relative efficacy in marker + and marker patients

> (Simon & Maitournam, CCR 2004)

Prevalence	Relative Efficacy	Efficiency Gain
25%	0%	16x
25%	50%	2.5x
50%	0%	4x
50%	50%	1.8x
75%	0%	1.8x
75%	50%	1.3x

ToGA trial design

Phase III, randomized, open-label, international, multicenter study

HER2-positive

advanced GC

(n=584)

R

3807 patients screened¹ 810 HER2-positive (22.1%)

Stratification factors

- advanced vs metastatic
- GC vs GEJ
- measurable vs non-measurable
- ECOG PS 0-1 vs 2
- capecitabine vs 5-FU

^aChosen at investigator's discretion GEJ, gastroesophageal junction 5-FU or capecitabine^a

+ cisplatin

(n=290)

+ cisplatin

+ trastuzumab

(n=294)

or capecitabine^a

TOGA Primary end point: OS

No. 246 209 at 290 266 223 185 143 117 90 risk

同日

MAYO CLINIC

T. trastuzumab

Bang et al; Lancet 2010

Unselected Designs

Sequential Testing Strategy Designs

- Marker based strategy design
 - Randomize subjects to treatment either based on or independent of the marker status
- Marker by treatment interaction design
 - Use the marker status as a stratification factor when randomizing subjects to treatment

All patients of a specific disease type and stage are eligible for the clinical trial, regardless of their MAYO CLIACTUAL marker status

Sequential testing: MaST Design

- Test marker positive first at α₁ (< 0.025)
- If positive, test marker negative at full α (0.025)
- If not positive, test overall treatment effect at level $\alpha \alpha_1$

Friedlin, Clin Trial 2013

Unselected Design: Marker Based Strategy

Sargent et al., JCO 2005

Beyond one mutation at a time: Umbrella Trials

 Better treatment of cancer by choosing therapies based on molecular characteristics of the tumor

• Context:

- Advances in many tumors culminating in large-scale sequencing
- Development of therapies directed to at least some "driver pathways"

May be histology or mutation specific

FD MAYO CLINIC

NCI-MATCH

- Umbrella protocol for multiple, single-arm phase II trials
 - Each molecular subgroup matched to a targeted agent
- IND for protocol template
 - Arms could be added or deleted without affecting other arms
- Initially focused on single-agents (commercial or experimental)
 - Combinations will be considered for targets that have validated combination targeted therapy
 - Need minimum dose/safety established in phase 1 trials
- Study will be reviewed by the CIRB

Adaptive Designs

- Randomize between at least 2 arms within biomarker-defined strata
 - Different signatures, different allowed drugs
- Evaluate success in an ongoing manner
 Alter randomization ratio?
- Drop poor performers
- 'Graduate' good performers to phase III trials

• Examples: ISPY-2 (Breast), BATTLE (NSCLC) Zhou, Clinical Trials 2008

ISPY-2 Adaptive Design Learn, Drop, Graduate, and Replace Agents Over Time

GG MAYO CLINIC

*Investigational agent may be used in place 32

Conclusions

- Targeted therapies, biomarkers require new methods for trials
 - Endpoints
 - Trial designs
- Fundamental principles still valid
 - Randomization
 - Rigorous design
- Trials will become smaller
 - By necessity (rare tumors)
 - By design (expected larger effects)
- By strategy (?) take more risks, bigger long-term rewards

33