Relevance of molecular markers for management of GIST tumors

Professor John R Zalcberg

Division of Cancer Medicine Peter MacCallum Cancer Centre

> School of Public Health Monash University

Disclosures

Research / Travel Support / Ad Boards;

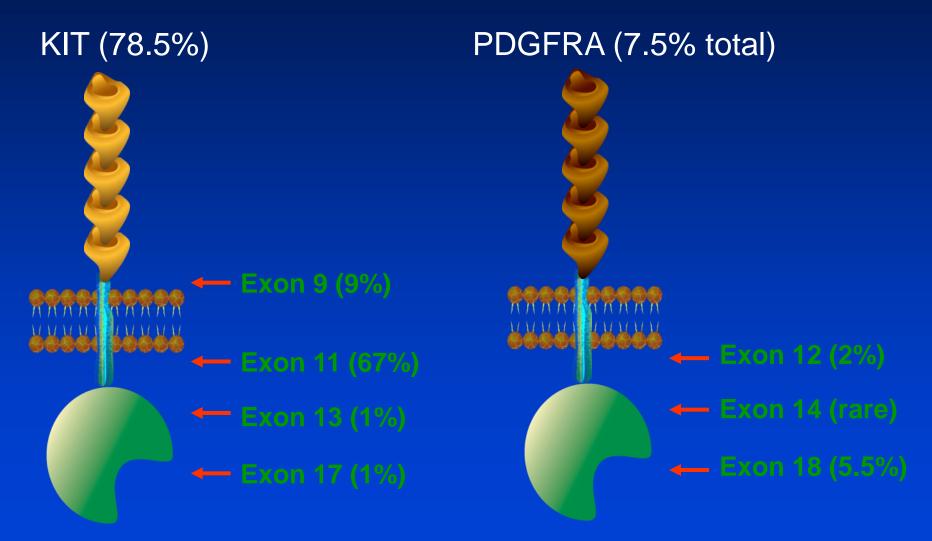
NovartisPfizerBayer

Relevance of molecular markers for management of GIST tumors?

- Not all centres have access to molecular testing
- The treatment is the same whether you know the mutation status or not
- Treatment changes are the same whether you know the mutation status or not.
- Secondary resistance is multifactorial and when due to secondary mutations is almost always treated in the same manner

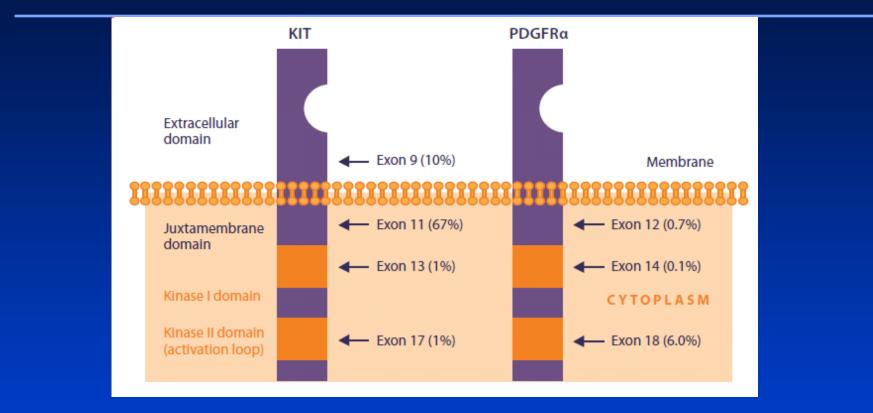
GIST Diagnosis - Immunohistochemistry

- KIT protein (CD117): positive in 95% of cases
- DOG1: positive in >95% of KIT-positive GIST and 35% of KIT-negative GIST
- CD34: positive in 70-80% of cases
- Smooth muscle actin (SMA): variably positive in 40% of cases
- Desmin: generally negative
 - Expressed in most leiomyosarcomas
- PKC θ: may be helpful for the identification of KIT-negative GIST
- Carbonic anhydrase-II (CA-II): overexpressed in GIST*


Courtesy of J. Fletcher. Presented at: Global Interdisciplinary Specialists Training Around the World (GISTour) 2009. 22 November 2009, Taipei, Taiwan. * Parkkila S et al. Mod Pathol. 2010 Jan 15. [Epub ahead of print]

The role of genetic changes in GIST

Mutations


- ~85% of GISTs have mutations in KIT or PDGFRA genes
- Mutations occur early in the development of GIST
 - Incidental tumours ≤1 cm have c-KIT mutations
 - Germline *c-KIT* mutations are associated with multiple GISTs
 - Cytogenetic changes in GIST are preceded by *c-KIT* mutations

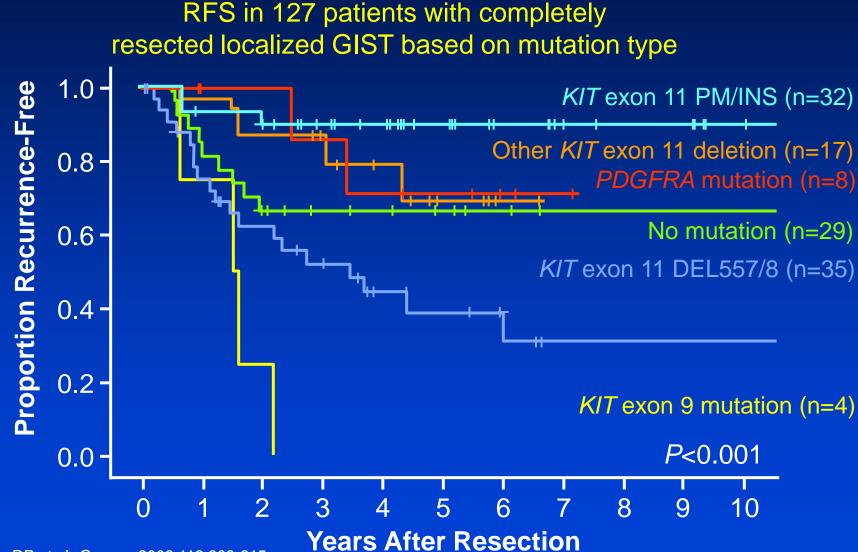
KIT and PDGFRA Mutations: Overall Mutation Frequency 86%

Corless & Heinrich. Ann Rev Pathol. 2008;3:557-586.

KIT and PDGFRα Tyrosine Kinases: Structure

KIT and PDGFRα are:

- Highly homologous proteins of the type III receptor tyrosine kinase family
- Involved in signal transduction in a range of cell functions, including proliferation, differentiation, apoptosis, survival, and adhesion


Corless CL, Heinrich MC. Annu Rev Pathol 2008;3:557–586. Annual Review of Pathology: Mechanisms of Disease by Corless. Copyright 2010 by Annual Reviews, Inc. Reproduced with permission of Annual Reviews, Inc.

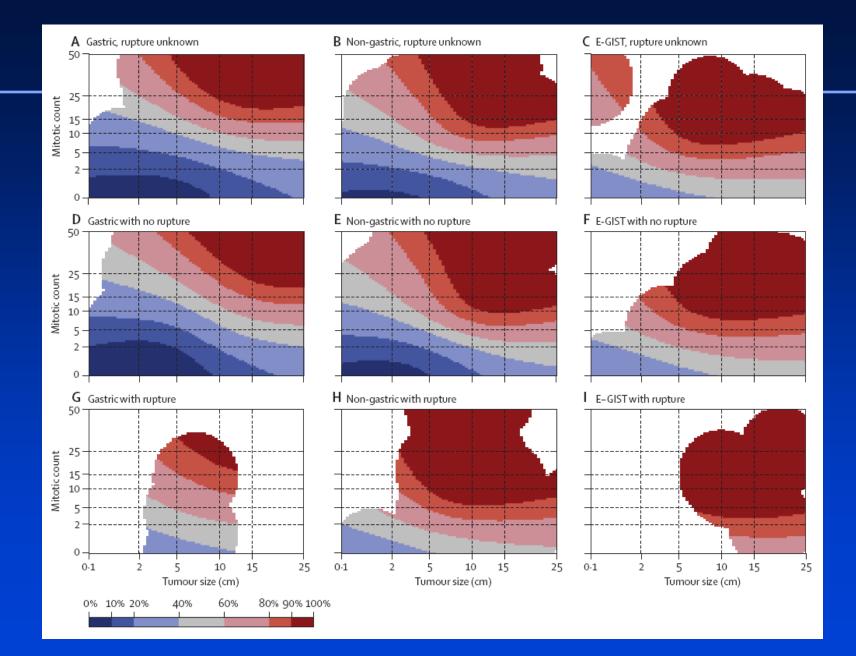
Wild-Type GIST (No KIT or PDGFRA Mutation)

Alteration	Estimated Frequency	References
BRAF mutation	< 7%	Agaram et al. Genes Chromosomes Cancer. 2008;47(10):853-859
KRAS mutation	<1%	Heinrich and Corless, unpublished
Increased IGF1R expression	50%	Tarn et al. PNAS. 2008;105(24):8387-8392
Germline SDHA, SDHB, SDHC or SDHD mutation*	~12%	Janeway et al. PNAS. 2011;108(1):314-318 Pantaleo et al. J Natl Cancer Inst. 2011;103(12):983-7
Loss of SDHB expression	High	Janeway et al. PNAS. 2011;108(1):314-318
Germline NF1 mutation	Rare	Andersson et al. Am J Surg Pathol. 2005; 29:1170-1176

*Carney-Stratakis syndrome: association of GIST and paraganglioma

Specific KIT Mutations Have Prognostic Importance

DeMatteo RP et al. Cancer. 2008;112:608-615.


Risk Stratification of Primary GIST: Miettinen (AFIP)

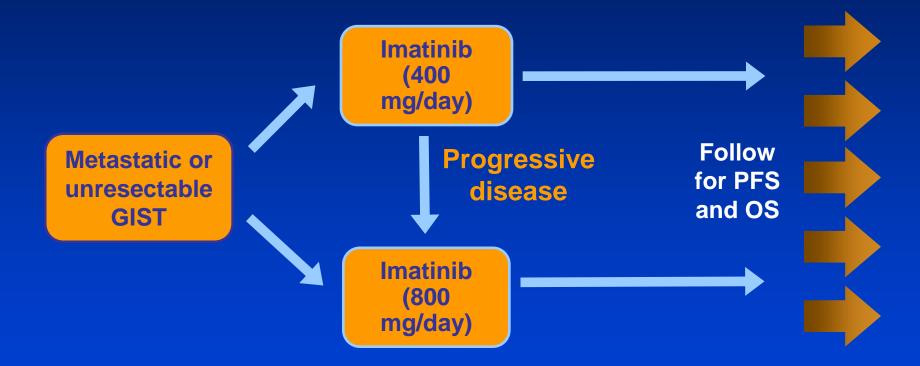
RISK FOR PROGRESSIVE DISEASE (metastasis or tumour-related death) By mitotic count, tumour size, and tumour site						
MITOTIC INDEX (High power field)	TUMOUR SIZE (cm)	GASTRIC	Jejunum/ Ileum	DUODENUM	RECTUM	
	≤2	0% (None)	0% (None)	0% (None)	0% (None)	
≤5∕50	>2 ≤5	1.9% (Very low)	4.3% (Low)	8.3% (Low)	8.5% (Low)	
	>5 ≤ 1 0	3.6% (Low)	24% (Moderate)	34% (High)∗	57%† (High)∗	
	>10	12% (Moderate)	52% (High)	54% (High)*	57% [,] (Figh),	
	≤2	0% †	50%† (High)	Not Determined ^a	54% (High)	
>5/50	>2 ≤5	16% (Moderate)	73% (High)	50% (High)	52% (High)	
	>5 ≤10	55% (High)	85% (High)	86% (High)*	71% (High)≊	
	>10	86% (High)	90% (High)	00% (High)	7 1 % (Filgh)	

Data are based on long-term follow-up of 1055 gastric, 629 small intestinal, 144 duodenal, and 111 rectal GISTs.

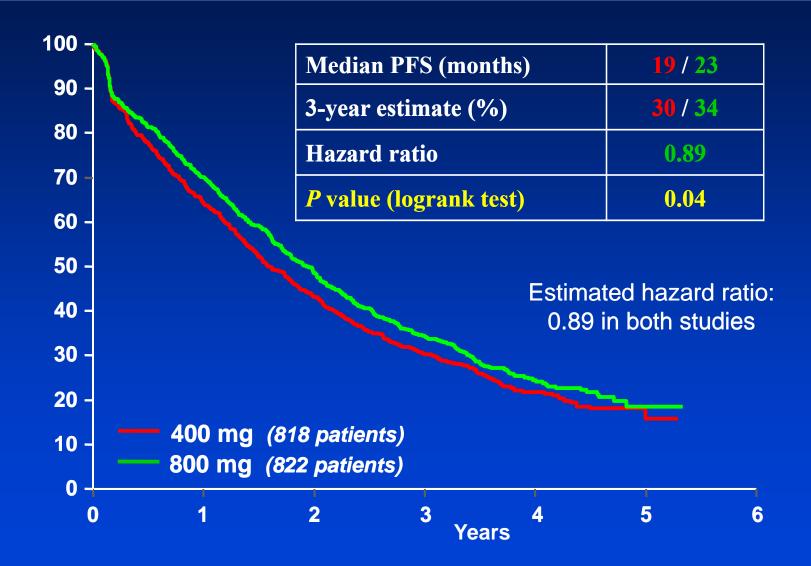
- † Denotes small numbers of cases.
- ≈ Tumour size categories combined for both duodenal and rectal GISTs because of small numbers.
- ∂ No tumours of such category were included in this study.

Original source: Miettinen M, Lasota J. Semin Diagn Pathol. 2006;23:70-83.

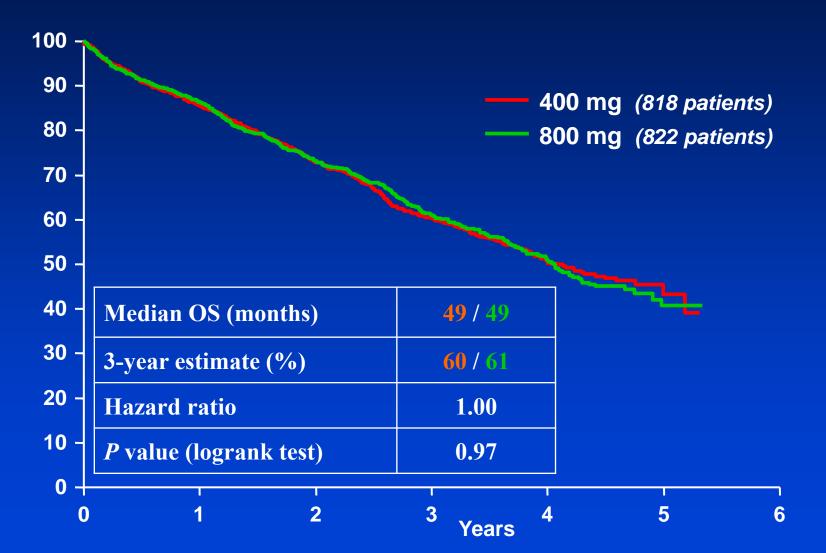
Joensuu H et al. Lancet Oncol, 13; 265-274, 2012


Mutation Subtypes According to the Primary Location

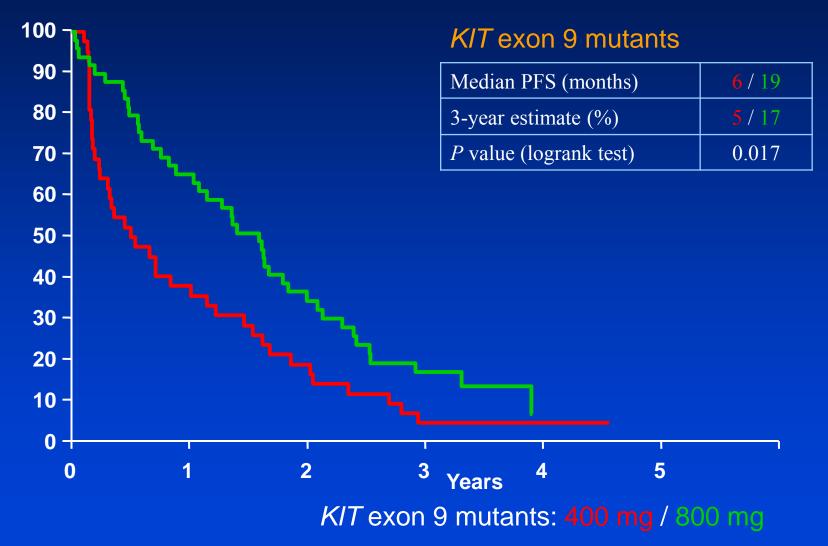
Genotype	Stomach (n=738)	Small bowel (n=261)	
	05.00/		
<i>KIT</i> mutation	65.2%	79.7%	
Exon 9	1.8%	23%	
Exon 11	61.4%	54%	
Exon 13	1.2%	2.3%	
Exon 17	0.8%	0.4%	
		alana	
PDGFRA mutation	22.9%	1.2%	
Exon 12	3.1%	0%	
Exon 14	0.5%	0.4%	
Exon 18	19.3%	0.8%	
Wild type	11.9%	19.1%	


Impact of mutation status on treatment

MetaGIST; Analysis of High and Low Imatinib Doses: Design of Trials


EORTC/ISG/AGITG Study 62005¹ North American Intergroup Study S0033²

Progression Free Survival: Entire MetaGIST Population



MetaGIST: Overall Survival

Van Glabbeke et al. ASCO 2007. Abstract 10004.

MetaGIST: Progression Free Survival (KIT exon 9)

MetaGIST Analysis: Impact of Imatinib Dose on PFS by *KIT* Exon 9 Mutation Status

Treatment	N	<i>P</i> -value Log Rank	HR (Adjusted) (95% CI)	HR (Non- adjusted) (95% CI)	<i>P</i> -value Interaction Test
Patients with KIT					
400 mg	42	0.0171 0.58		0.57	
800 mg	49		(0.38, 0.91)	(0.37, 0.89)	0.012
Patients without <i>KIT</i> exon 9 mutations					0.012
400 mg	341	0.8586	1.02	1.02	
800 mg	340	0.0000	(0.85, 1.21)	(0.86, 1.22)	

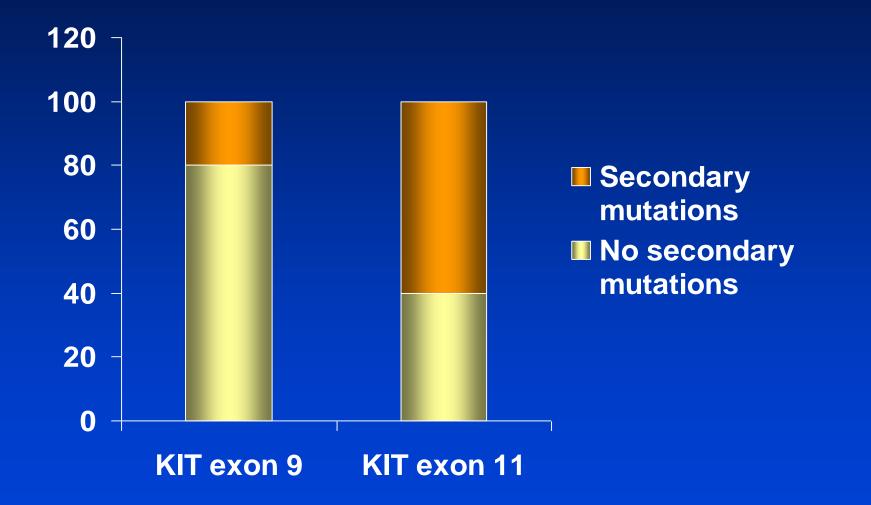
van Glabbeke MM, et al. J Clin Oncol.DOI.10.1200./JCO.2009.24. 2099.

Imatinib Resistance in GIST

> 14% of GIST patients exhibit primary resistance: i.e. early tumor progression (within 6 months of beginning imatinib therapy)

50% of all GIST patients exhibit tumor progression within 2 years of starting imatinib therapy i.e. secondary resistance

Demetri et al. N Engl J Med. 2002;347:472-480. Verweij et al. Lancet. 2004;364:1127-1137.


Mechanisms of Imatinib Resistance

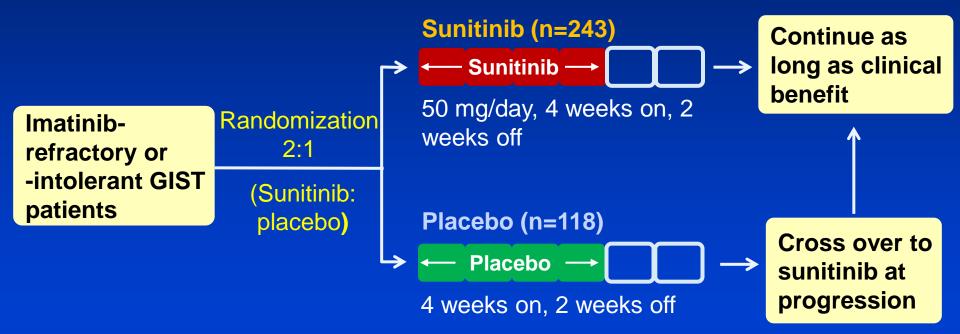
- Primary imatinib resistance is more common in GISTs with the following genotypes
 - KIT exon 9 mutations
 - PDGFRA D842V mutations
 - No detectable mutations (WT *KIT/PDGFRA* genotype)

Secondary imatinib resistance is commonly associated with the emergence of new kinase mutations

Antonescu et al. Clin Cancer Res. 2005;11:4182-4190. Heinrich et al. J Clin Oncol. 2003;21:4342-4349. Debiec-Rycher et al. Eur J Cancer. 2006;42:1093-1103. Heinrich et al. J Clin Oncol. 2006;29:4764-4774.

Acquired Drug Resistance

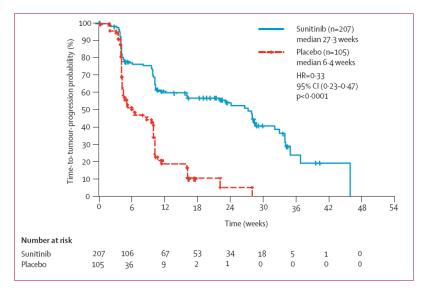
Molecular Mechanisms of Imatinib Resistance

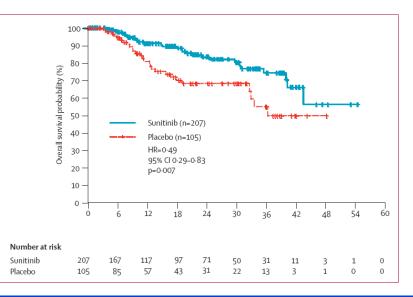

Mutation – Exon 17 – Exon 14 ~70%

Target overexpression Substitution alternate RTK

Activation of downstream signalling pathways

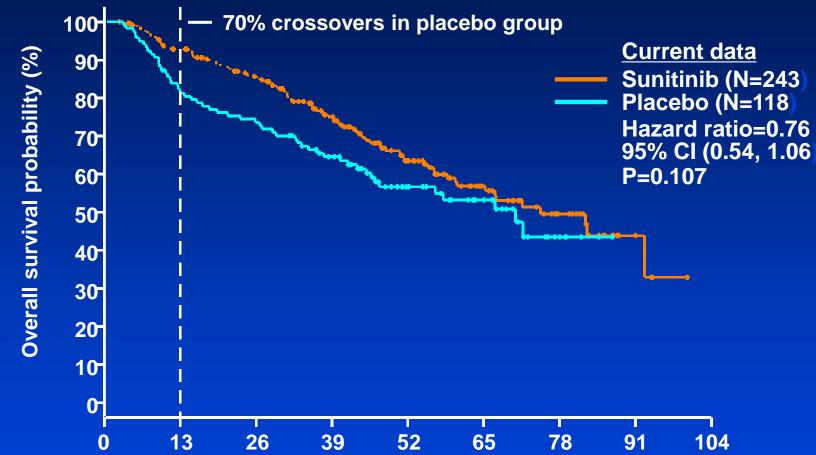
Phase 3 trial of sunitinib in imatinib-resistant/-intolerant GIST

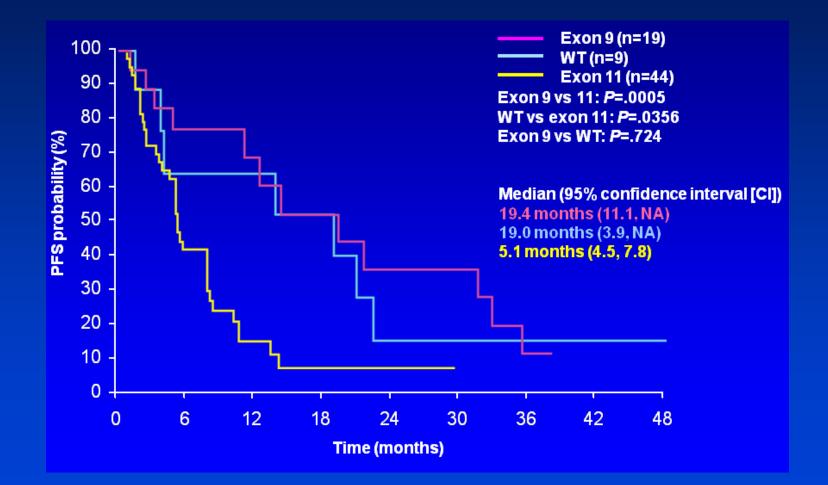

Conducted at 56 sites in Europe, USA, Australia and Asia (Singapore). Final protocol dated August 2003



Phase III Trial: Sunitinib in Advanced GIST After Imatinib Failure

Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial

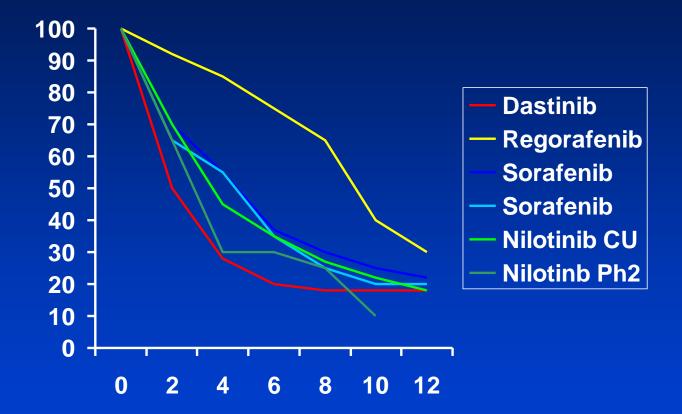

George D Demetri, Allan T van Oosterom, Christopher R Garrett, Martin E Blackstein, Manisha H Shah, Jaap Verweij, Grant McArthur, Ian R Judson, Michael C Heinrich, Jeffrey A Morgan, Jayesh Desai, Christopher D Fletcher, Suzanne George, Carlo L Bello, Xin Huang, Charles M Baum, Paolo G Casali



(W)

Overall Survival with Crossover to Sunitinib

Progression-Free Survival on Sunitinib in Imatinib-Resistant/Intolerant GIST


Molecular Subsets of Imatinib-Resistant GIST Highly Sensitive to Sunitinib:

Mutation Status	n	RECIST RR	Clinical Benefit (RR + SD > 6 months
Exon 9 <i>KIT</i> mutation	15	6 (40%)	12 (80%)
Single PDGFRA mutation	1	0	1 (100%)
Wild Type <i>KIT+PDGFRA</i>	9	1 (11%)	5 (55%)
Exon 13 or 14 as secondary mutations	16	2 (13%)	9 (56%)

Molecular Subsets of Imatinib-Resistant GIST Less Sensitive to Sunitinib:

Mutation Status	n	RECIST RR	Clinical Benefit (RR + SD > 6 months
Exon 11 <i>KIT</i> mutation	7	0	1 (14%)
Secondary Exon 17 <i>KIT</i> mutations	8	0	3 (38%)

Progression Free Survival in screening studies in 3rd line GIST

Montemurro M et al Eur.J Cancer 2009; 45:2293-2297

² Sawaki A et al Cancer EPUB 2011

J.Verweij, ASCO Discussion, 2011

GIST – Regorafenib In Progressive Disease (GRID): Study Design

Metastatic/ unresectable GIST pts progressing despite at least prior imatinib <u>and sunitinib</u> (n=236 screened; n=199 randomized) Regorafenib + best supportive care (BSC) 160 mg once daily 3 weeks on, 1 week off (n=133)

Placebo + BSC 3 weeks on, 1 week off (n=66) Disease progression per independent blinded central review

Unblinding

Crossover offered for placebo arm or continued regorafenib for treatment arm

Multicenter, randomized, double-blind, placebo-controlled phase III study

R

A N

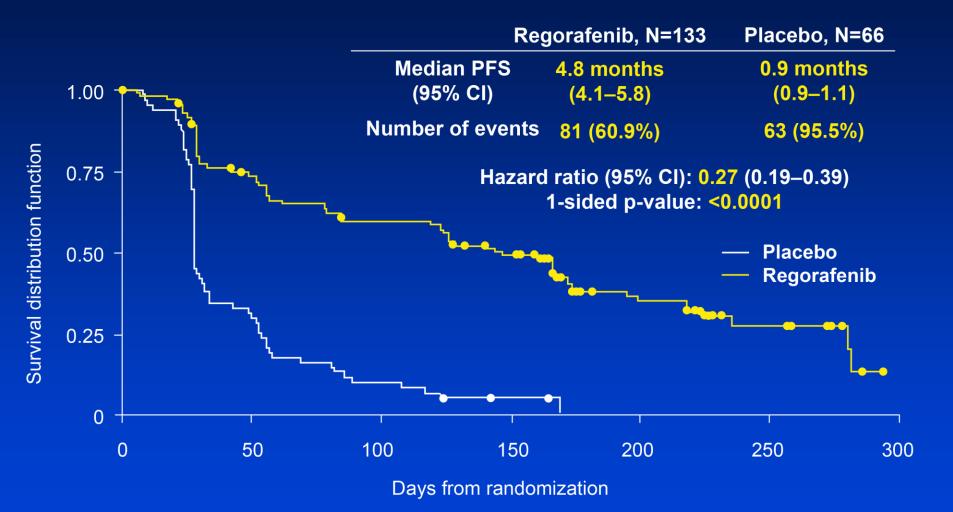
D

0

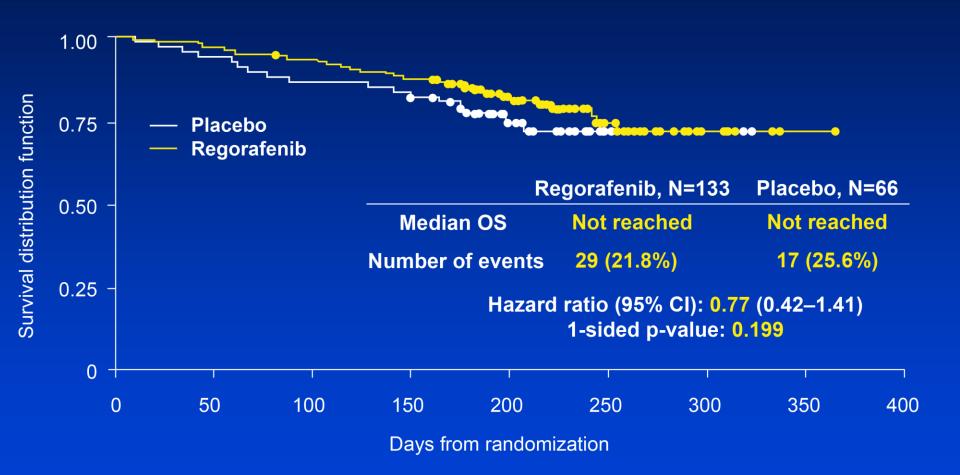
Μ

Ζ

A


0

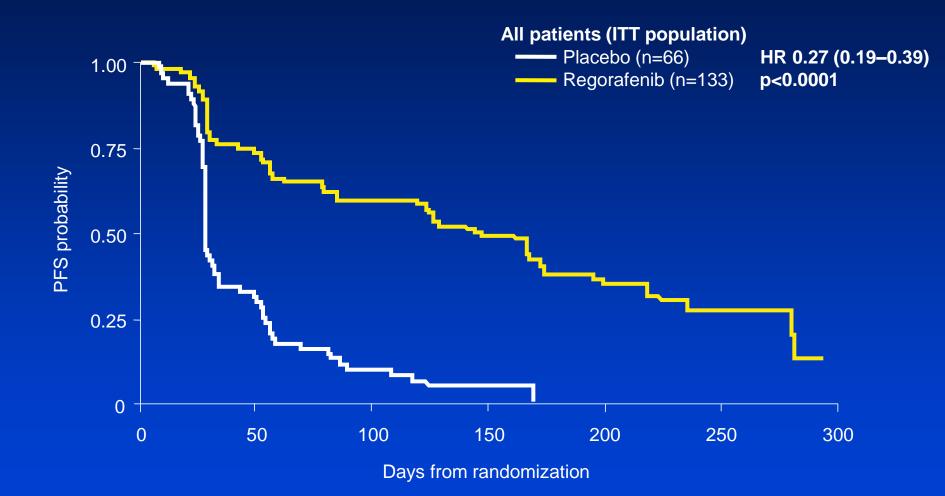
Ν


- Global trial: 17 countries across Europe, North America, and Asia-Pacific
- Stratification: treatment line (2 vs >2 prior lines), geographical location (Asia vs "Rest of World")

Regorafenib (unblinded) until next progression

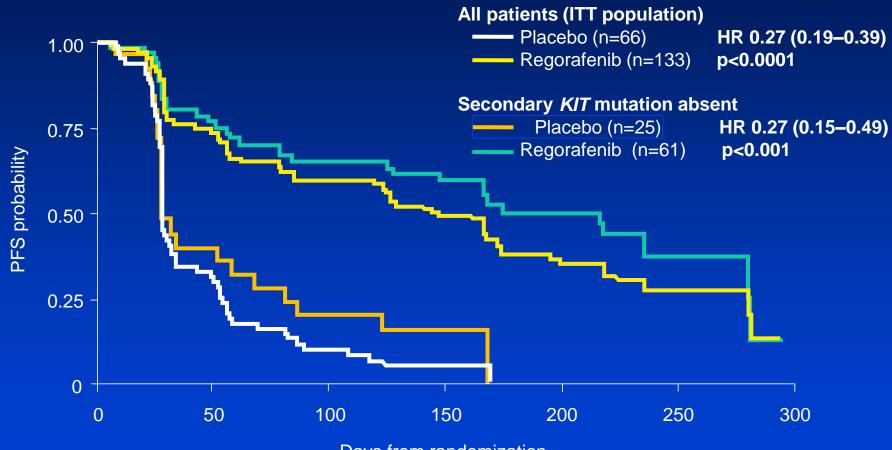
GRID Study: PFS (primary endpoint per blinded central review)

GRID Study: Overall Survival (following 85% cross-over of patients on placebo arm)

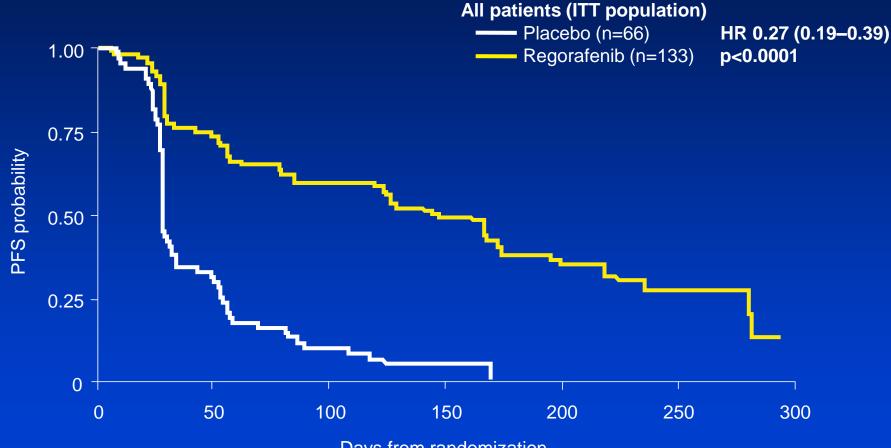

Baseline GIST Genotype per Site Reports: Exploratory Analysis of Outcomes

Tumor genotype, n (%)	Placebo	Regorafenib	Total
Prior GIST genotype available and reported at study entry (% total study population)	36 (54.5%)	60 (45.1%)	96 (48.2%)
KIT exon 11 mutation	17 (47.2%)	34 (56.7%)	51 (53.1%)
KIT exon 9 mutation	6 (16.7%)	9 (15.0%)	15 (15.6%)
Wild type <i>KIT</i> and <i>PDGFRA</i>	2 (5.6%)	6 (10.0%)	8 (8.3%)
Unspecified or other exon mutant	11 (30.5%)	11 (18.3%)	22 (22.9%)

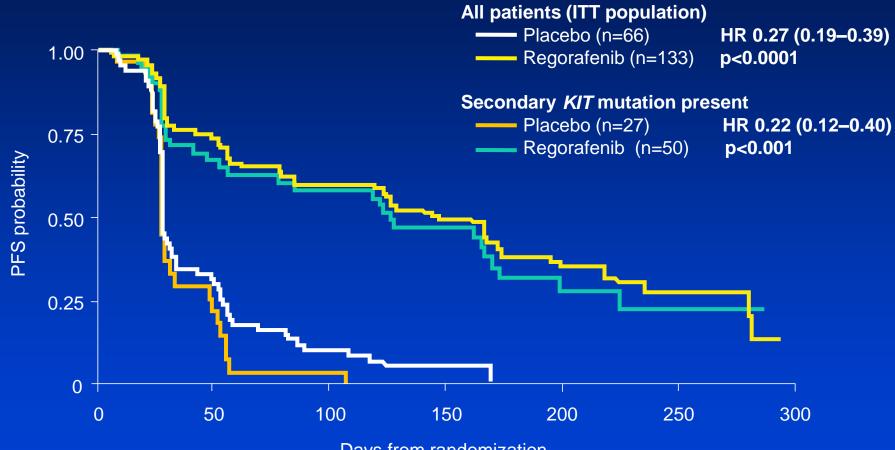
Baseline GIST Genotype per Site Reports: Exploratory Analysis of Outcomes


				Progression-free survival	
Mutation biomarker	N Events HR		HR	Placebo, Regorafe median months median mo	
KIT exon 11	51	40	0.212	1.1 5.	6
KIT exon 9 mutation	15	11	0.239	0.9 5.	4

Regorafenib shows benefit over placebo in patients without secondary *KIT* mutations

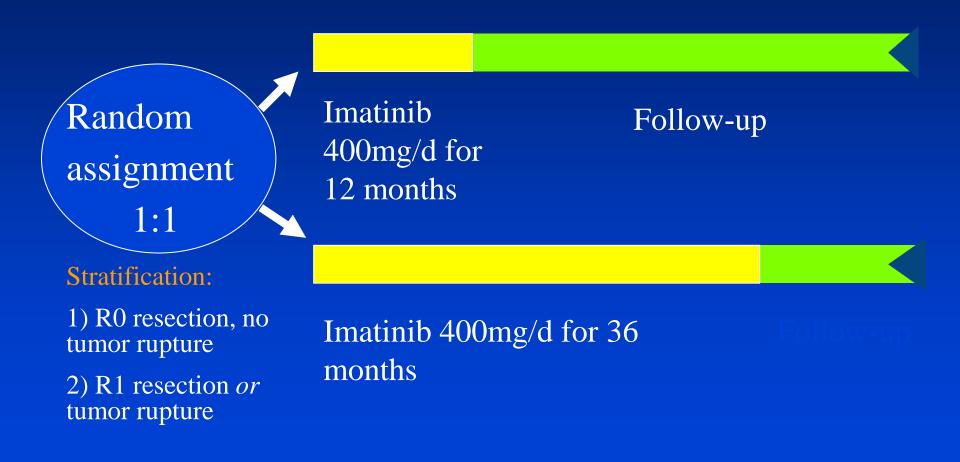

ITT curves from Demetri GD et al. Lancet 2013; 381: 295–302

Regorafenib shows benefit over placebo in patients without secondary *KIT* mutations


Days from randomization

Regorafenib shows benefit over placebo in patients with secondary KIT mutations

Days from randomization


Regorafenib shows benefit over placebo in patients with secondary *KIT* mutations

Days from randomization

SSGXVIII: Study design

An open-label Phase III study

SSGXVIII: Objectives

Primary: RFS -Time from randomization to GIST recurrence or death

Secondary objectives included:
– Safety
– Overall survival

SSGXIII: Key inclusion criteria

Histologically confirmed GIST, KIT-positive
High risk of recurrence according to the modified

Consensus Criteria*:

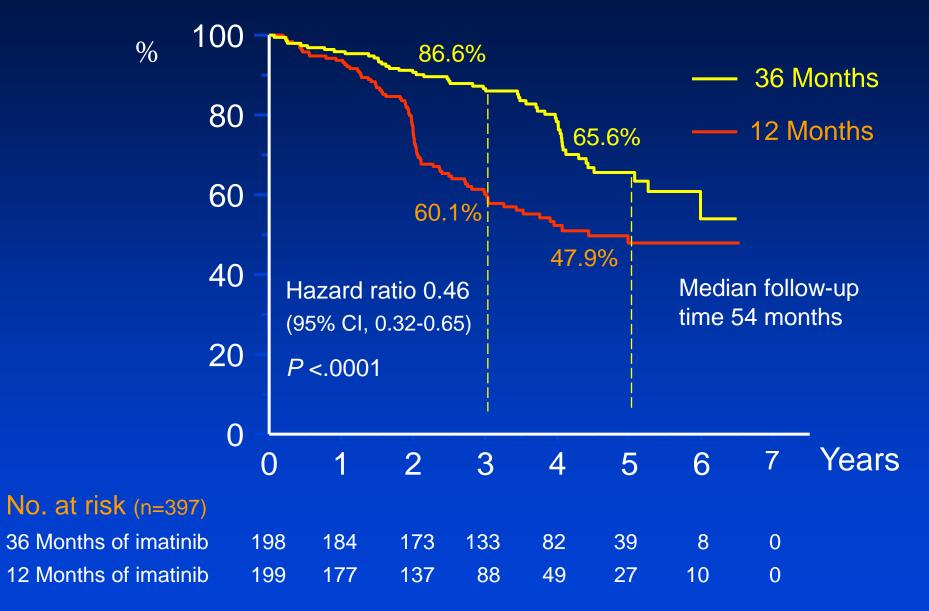
- Tumor diameter >10 cm or
- Tumor mitosis count >10/50 HPF** or
- Size >5 cm and mitosis count >5/50 HPFs or
- Tumor rupture spontaneously or at surgery

*Fletcher CD et al. Hum Pathol 2002; 33:459-65

**HPF, High Power Field of the microscope

Baseline characteristics (ITT)

Characteristic	12-Mo group	36-Mo group
Median age (range) - years	62 (23-84)	60 (22-81)
Male - (%)	52	49
ECOG performance status 0 - (%)	85	86
Gastric primary tumor - (%)	49	53
Median tumor size (range) - cm	9 (2-35)	10 (2-40)
Median mitosis count - /50 HPFs	10 (0-250)	8 (0-165)
Tumor rupture - (%)	18	22
GIST gene mutation site - (%)*		
- <i>KIT</i> exon 9	6	7
- <i>KIT</i> exon 11	69	71
- <i>KIT</i> exon 13	2	1
- <i>PDGFRA</i> (D842V)	13 (10)	12 (8)
- wild type	10	8

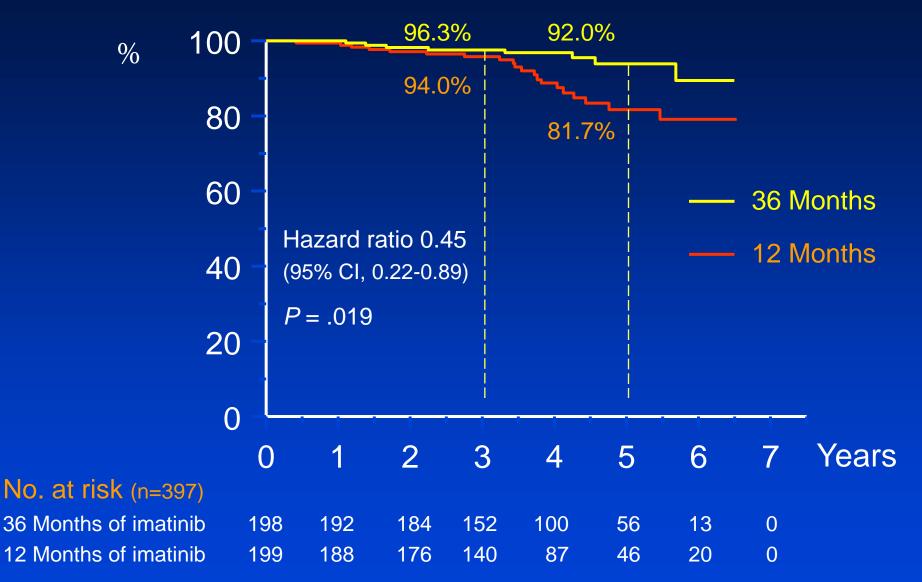

Available for 366 (92%) out of the 397 tumors

Baseline characteristics (ITT)

Characteristic	12-Mo group	36-Mo group
Median age (range) - years	62 (23-84)	60 (22-81)
Male - (%)	52	49
ECOG performance status 0 - (%)	85	86
Gastric primary tumor - (%)	49	53
Median tumor size (range) - cm	9 (2-35)	10 (2-40)
Median mitosis count - /50 HPFs	10 (0-250)	8 (0-165)
Tumor rupture - (%)	18	22
GIST gene mutation site - (%)*		
- <i>KIT</i> exon 9	6	7
- <i>KIT</i> exon 11	69	71
- <i>KIT</i> exon 13	2	1
- <i>PDGFRA</i> (D842V)	13 (10)	12 (8)
- wild type	10	8

*Available for 366 (92%) out of the 397 tumors

SSGXVIII: Recurrence-free survival (ITT)


Subgroup	No. of patients	Hazard	ratio (95% CI), RFS	P value
Age	36 n	10 better	<u>12 mo better</u>	
≤65	256	_	0.47 (0.30-0.74)	.001
>65	141		0.49 (0.28-0.85)	.01
Sex		_	, , , , , , , , , , , , , , , , , , ,	
Male	201		0.46 (0.28-0.76)	.002
Female	196		0.46 (0.28-0.76)	.002
Tumor site				
Stomach	202		0.42 (0.23-0.78)	
Other	193		0.47 (0.31-0.73)	<.001
Tumor size				
≤ 10 cm	219		0.40 (0.23-0.69)	
>10 cm	176		0.47 (0.29-0.76)	.002
Mitoses/50 HPF				
≤ 10 mitoses	209	0_	0.76 (0.43-1.32)	
> 10 mitoses	154	0	0.29 (0.17-0.49)	<.001
Mitoses/50 HPF				
≤ 10 mitoses	256	0	0.58 (0.34-0.99)	.04
> 10 mitoses	137	—0—	0.37 (0.23-0.61)	<.001
Tumor rupture	040			004
No	318	—0—	0.43 (0.28-0.66)	<.001
Yes	79		0.47 (0.25-0.89)	.02
			0.04 (0.00.4.00)	24
KIT exon 9	26	0		
KIT exon 11	256	-0	0.35 (0.22-0.56)	
Wild type	33	0	0.41 (0.11-1.51)	.16
Other	51	00	0.78 (0.22-2.78)	.70
		i i		

1.0

0.1

10

SSGXVIII: Overall survival (ITT)

Key clinical question

How should patients be treated in the adjuvant setting when the resected tumour has primarily an exon 9 mutation?

Observations

The principles underlying "personalized medicine" apply equally in GIST.

However unlike personalized treatment options in other diseases, the treatment options remain the same whatever the personalized approaches dictate.

Hence it's possible to treat patients with GIST without knowledge of mutation status

Perhaps the only exception relates to the use of a high dose of imatinib in patients carrying a GIST with a mutation in Exon 9

Conclusions

Where possible, mutation analysis is preferred in managing patients with advanced GIST

- If this is not feasible, then caution should be used in managing patients with metastatic GIST arising from the small bowel (or principally peritoneal metastases) as these patients may benefit from early dose escalation or early use of sunitinib
- The absolute role of understanding mutation status for the majority of patients with advanced disease or in the adjuvant setting is still not clear cut.