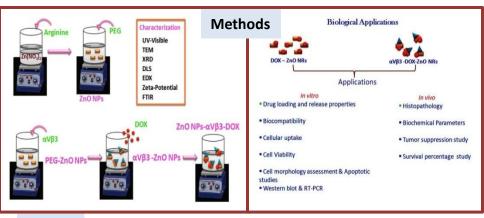


Antitumor Efficacy of Integrin αVβ3 Antibody Conjugated ZnO Nanocarrier Based Drug Delivery System to Target Breast Carcinoma

ALEN CONTRACTOR


Vimala Karuppaiya, Soundarapandian Kannan

Division of Cancer Nanomedicine, Department of Zoology, Periyar University, Salem-636 011, Tamil Nadu, India.

Publication number 4P

Introduction: The overexpression of integrin $\alpha V\beta 3$ enhances tumour development, metastasis, angiogenesis, treatment resistance, and clinical staging in breast cancer patients. As a result, inhibiting integrin $\alpha V\beta 3$ might be a promising anti-cancer agent for breast cancer. Furthermore, dealing with a post-operative wound from breast cancer is a difficult method in cancer biology.

Objectives: The present proposal is concerned with a new approach of integrin $\alpha V\beta$ 3-decorated nanocomposites for the intelligent subcellular targeted delivery of anticancer drugs and wound healing.

a) Results	Nanoparticle s (NPs)	Particle size (nm)	Poly dispersity index	Zeta potential (mV)	Pore size (nm)	
A A	PEG-ZnO	128.26±5.	0.039	+25.04±0.54	11.73±0.4	Š
	NRs	32 nm			3	<u>0</u> .
	PEG-ZnO	133.37±6.	0.046	-21.45±0.41	4.36±0.27	SL
	NRs:αVβ3	54 nm				-5
<u>na</u>	PEG-ZnO	139.23±7.	0.052	+34.21±0.29	2.14±0.36	Ĕ
PEG-ZnO NRs PEG-ZnO NRs:αVβ3 PEG-ZnO	NRs:αVβ3-DOX NRs:αVβ3	23 nm				0

Figure 1.TEM images of ZnO NRs synthesized using bio-organic method; Table 1. Characteristics of Different Nanoparticles Prepared under Optimal Conditions

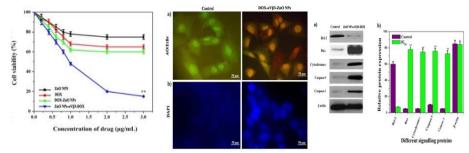


Figure 2-4. In vitro antitumor efficacy of DOX- α V β 3-ZnO NPs; Fluorescent microscopic images and Western blot analysis of DOX- α V β 3-ZnO NPs treated with MDA-MB-231 breast cancer cells

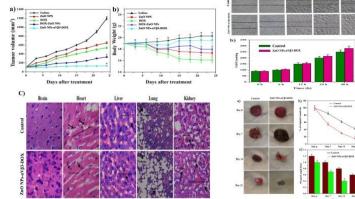


Figure 5. In vivo anti-tumor therapy. Figure 6. Light micrographs of scratch assay Figure 7. The effect of DOX- α V β 3-ZnO NPs on wound healing

DOX- $\alpha V\beta$ 3-ZnO NPs strongly inhibited tumor progression and suppress cell migration and proliferation. As a result, targeting certain integrins and integrinbinding proteins might open up new therapeutic avenues for breast cancer therapies

Acknowledgement: UGC- Women Scientist, ESMO TAT Travel Grant