Pharmacokinetic profile and food effect of RP-3500, a highly potent and specific inhibitor of ataxia telangiectasia and Rad3-related protein kinase in patients with cancer

Stephanie Lheureux¹, Ezra Rosen², Elizabeth Lee³, David Spigel⁴, Martin Højgaard⁵, Elisa Fontana⁶, Niharika Mettu⁷, Louise Carter⁸, Sarsvat Patel⁹, Robert Papp¹⁰, Suzanne May⁹, Parham Nejad⁹, Danielle Ulanet⁹, Marisa Wainszelbaum⁹, Peter Manley⁹, Maria Koehler⁹, Adrian J. Fretland⁹, Ruth Plummer¹¹, Timothy A. Yap¹²

¹Princess Margaret Cancer Centre - Toronto, Canada; ²Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ³Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; ⁴Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA; ⁵Rigshospitalet, Department of Oncology, Copenhagen, Denmark; ⁶Sarah Cannon Research Institute UK, London, UK; ⁷Duke University, Medical Oncology, Durham, NC, USA; ⁸Division of Cancer Sciences, University of Manchester and the Christie NHS Foundation Trust, Manchester, UK; ⁹Repare Therapeutics, Cambridge, MA, USA; ¹⁰Repare Therapeutics, Saint-Laurent, QC, Canada; ¹¹Newcastle University and Newcastle University and Newcastle Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle-upon-Tyne, UK; ¹²Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Introduction

- · Ataxia telangiectasia and Rad3-related (ATR) is a key mediator of cellular DNA damage response (DDR) that is activated in response to DNA replication stress^{1,2}
- Specific genes encoding DNA repair proteins, such as ataxia telangiectasia mutated (ATM), represent synthetic lethal (SL) interactions with ATR^{1,2}
- Perturbation of either SL genes is tolerated, but simultaneous perturbation causes cell death, making ATR inhibition (ATRi) an attractive target for the treatment of patients with specific genetic lesions
- CRISPR-based Synthetic Lethal Interactions for Precision Diagnostics (SNiPDx) screening identifies SL genomic alterations that predict sensitivity to ATRi (STEP² genes)
- ATM, ATRIP, BRCA1/2, CHEK2, CDK12, CHTF8, FZR1, MRE11, NBN, PALB2, RAD17, RAD50, RAD51B/C/D, REV3L, RNASEH2A/B, SETD2
- RP-3500 is a potent and highly selective ATRi which has demonstrated efficacy in both pre-clinical xenograft models as well as in early clinical trials^{3,4}
- The ongoing TRESR study (NCT04497116) is a phase 1/2a study of patients with advanced cancer whose tumors harbor STEP² gene alterations

Objective

· The objective of this analysis was to characterize the pharmacokinetic (PK) profile of RP-3500 and assess the impact of food on PK parameters in patients with advanced solid tumors harboring ATR-sensitizing mutations from the dose-escalation portion of TRESR

Methods

• TRESR is an exploratory, modular, phase 1/2a, first-in-human, multicenter, open-label doseescalation and dose-expansion study (Figure 1)

- Patients received RP-3500 once daily (QD) or twice daily (BID) on a schedule of 5 days on/2 days off (Module 1a) or 3 days on/4 days off (Module 1b) for a 21-day cycle (Table 1)
- Later cohorts also evaluated a 3 days on/4 days off schedule, 2 out of 3 weeks in a 21-day cycle - To evaluate the effect of food (Module 1c) at therapeutically relevant doses, 12 patients received
- RP-3500 on day -3 with a high fat/calorie meal; the same patients received RP-3500 on day 1 in the fasted state

Table 1. Summary of study modules							
Module	Fed/fasted	Day 1 dose					
1a: 5 days on/2 days off (N=22)	Fasted	5, 10, 20, 40, 80, 100, 120, or 160 mg QD 40 or 80 mg BID					
1b: 3 days on/4 days off (N=86)	Fasted	120, 160, or 200 mg QD 40 or 60 mg BID					
1c: Food effect (N=12)	Day -3, high fat meal (~1000 kcal, ~50% fat): day 1, fasted	100, 120, or 160 mg QD					
BID, twice daily; QD, once daily.							

Study endpoints

- The primary study endpoint was safety and tolerability of RP-3500 and identification of the maximum tolerated dose (MTD) and the recommended phase 2 (RP2D) dose and schedule
- · Secondary endpoints included characterization of the PK of RP-3500 as well as investigation of the effect of a high-fat/high-calorie meal on the PK of RP-3500

Study assessments

- PK sampling occurred for 24 hours post dose on cycle 1/day 1, and either cycle 1/day 3 or 5, or cycle 2/day 3 or 5, depending on schedule
- RP-3500 plasma concentrations were measured using a validated LC/MS-MS assay • The PK parameters of RP-3500 were estimated using noncompartmental methods
- (Phoenix® WinNonlin® 8.3, Certara USA, Inc., Princeton, NJ) • PK parameters estimated include half-life (T_x), time to maximum observed concentration (T_{max}), maximum observed concentration (C_{max}), C_{max}/dose, area under the concentrationtime curve from time 0 to last quantifiable concentration (AUC_{last}), AUC_{last}/dose, AUC 0–24 hours post dose (AUC_{0–24}), and AUC from time 0 to infinite time (AUC_{inf})
- Descriptive statistics were compiled in Phoenix[®] WinNonlin[®] 8.3

Results

Characteristic	All subjects (N=120)
Sex, n (%)	
Male	49 (40.8)
Female	71 (59.2)
Age, years	
Mean (SD)	61.3 (10.94)
Median (range)	63.0 (30-77)
Age group, n (%)	
<65 years	66 (55.0)
≥65 years	54 (45.0)
Body mass index [*] , kg/m ²	
Mean (SD)	26.8 (6.15)
Median (range)	26.4 (17-46)
ECOG status, n (%)	
0	57 (47.5)
1	61 (50.8)
Missing	2 (1.7)

0.001

0.0001

0.0001

120 patients had sufficient data for which PK parameters could be estimated on cycle 1/day 1 323 plasma concentration time profiles were collected over the PK collection period, into cycle 2 PK profile: daily and twice daily dosing In general, the PK of RP-3500 exhibited low between-subject variability

Within the dose escalation phase of TRESR,

- Over the dose range tested (5-200 mg QD), the increases in C_{max} and AUC were approximately linear (Figure 2, 3; Tables 3-6)
- The T_{max} of RP-3500 was early; the median T_{max} across dose levels ranged from 1–2 hours (Figure 2, 3; Tables 3–6)
- Across the dose range tested, the half-life of RP-3500 was approximately 6 hours with no accumulation after repeat dosing

Table 3. PK parameters for daily dosing, cycle 1/day 1									
	5 mg (n=1)	10 mg (n=1)	20 mg (n=2)	40 mg (n=1)	80 mg (n=1)	100 mg (n=7)	120 mg (n=31)	160 mg (n=64)	200 mg (n=5)
T _{max} , h*	1	1	1.5	2	1	1	2	1.5	1
C _{max} , μg/mL	0.491	1.05	0.560 (0.338)	0.894	5.66	5.75 (0.974)	5.74 (2.47)	7.64 (2.39)	9.99 (3.65)
C _{max} /dose, μg/mL/mg	0.098	0.105	0.028 (0.019)	0.022	0.071	0.057 (0.010)	0.048 (0.021)	0.048 (0.015)	0.050 (0.018)
AUC _{last} , hr*µg/mL	2.50	6.00	2.33 (1.09)	3.13	22.1	34.3 (17.8)	33.2 (14.7)	48.0 (23.0)	57.7 (13.7)
AUC _{last} /dose, hr*µg/mL/mg	0.499	0.600	0.116 (0.054)	0.078	0.277	0.343 (0.178)	0.276 (0.123)	0.300 (0.114)	0.289 (0.068)
AUC _{inf} , hr*µg/mL	2.77	7.04	2.97 (0.272)	4.65	23.2	37.6 (22.6)	36.8 (16.8)	53.2 (30.6)**	62.5 (16.1)
T _½ , h	7.5	9.1	5.0 (0.4)	4.9	5.9	6.0 (1.8)	6.5 (2.1)	6.3 (2.3)**	6.6 (1.1)

e; AUC int, AUC from time 0 to infinite time; AUC iast, AUC from time 0 to last quantifiable concentration; Cm

Table 4. PK parameters for daily dosing, cycle 1/day 3								
	5-100 mg (n=0)	120 mg (n=19)	160 mg (n=64)	200 mg (n=4)				
T _{max} , h*	NA	2	2	1				
C _{max} , μg/mL	NA	5.26 (1.65)	7.68 (2.62)	10.2 (1.79)				
C _{max} /dose, µg/mL/mg	NA	0.044 (0.014)	0.048 (0.016)	0.051 (0.009)				
AUC _{last} , hr*µg/mL	NA	33.1 (17.7)	50.5 (26.3)	66.3 (9.30)				
AUC _{last} /dose, hr*µg/mL/mg	NA	0.276 (0.147)	0.315 (0.164)	0.331 (0.047)				
AUC _{inf} , hr*µg/mL	NA	34.7 (21.0)**	57.1 (33.3)***	76.4 (10.8)				
T _{1/2} , h	NA	5.6 (1.5)**	6.0 (1.8)***	8.8 (3.1)				

	5 mg (n=1)	10 mg (n=1)	20 mg (n=2)	40 mg (n=1)	80 mg (n=1)	100 mg (n=6)	120 mg (n=4)	160 mg (n=2)	200 mg (n=0)
T _{max} , h*	1	1	1	1	1	1.5	2	1	NA
C _{max} , μg/mL	0.444	0.976	0.439 (0.594)	2.01	2.54	4.73 (1.56)	5.12 (1.25)	6.71 (1.03)	NA
C _{max} /dose, μg/mL/mg	0.089	0.098	0.022 (0.030)	0.050	0.032	0.047 (0.016)	0.043 (0.010)	0.042 (0.006)	NA
AUC _{last} , hr*µg/mL	2.01	3.00	4.10**	4.68	15.0	32.2 (7.80)	31.4 (3.28)	31.6 (1.45)	NA
AUC _{last} /dose, hr*µg/mL/mg	0.401	0.300	0.205**	0.117	0.188	0.322 (0.078)	0.262 (0.027)	0.197 (0.009)	NA
AUC _{inf} , hr*µg/mL	2.23	4.01	4.19**	4.71	15.4	34.1 (8.64)	34.1 (4.30)	33.2 (0.458)	NA
T _% , h	7.7	4.9	4.6**	3.8	4.5	5.4 (0.7)	6.5 (1.1)	6.0 (1.6)	NA

Table 6. PK parameters for twice daily dosing, cycle 1/day 1							
	40 mg 60 mg 80 (n=2) (n=4) (n=						
T _{max} , h*	1.5	1.5	2				
C _{max} , μg/mL	3.00 (0.608)	3.44 (1.23)	3.01				
C _{max} /dose, µg/mL/mg	0.075 (0.015)	0.057 (0.021)	0.038				
AUC _{last} , hr*µg/mL	42.0 (19.3)	29.7 (13.8)	42.9				
AUC _{last} /dose, hr*µg/mL/mg	1.05 (0.483)	0.495 (0.230)	0.536				
AUC _{inf} , hr*µg/mL	605 (716)	80.4 (58.0)	NA**				
Il data presented as mean (SD) unless otherwise noted.							

"Data reported as median. "Dasked on I=U. AUC, area under the concentration-time curve; AUC_{ert}, AUC from time 0 to infinite time; AUC_{last}, AUC from time 0 to last quantifiable concentration; C_{max}, maximum observer

time 0 to infinite time: AUCnet, AUC from time 0 to last quantifiable concentration: Cm

PK profile from module 1c, daily dosing

- Median T_{max} was delayed by 3 hours when RP-3500 was administered with a high fat/high calorie meal (Figure 4, Table 7)
- Mean C_{max} across dose tested was reduced by 45% compared with fasting values (Figure 4, Table 7)
- On day -3 (fed arm), the mean AUC₀₋₂₄ was 16% lower compared with AUC₀₋₂₄ on day 1 (fasted arm) (Figure 4, Table 7)

Table 7. PK parameters after a high-fat meal and after a 24-hour fast

	After hig	h-fat meal (cycle	e 1/day –3)	After 24-hour fast (cycle 1/day 1)			
Dose	100 mg (n=1)	120 mg (n=8)	160 mg (n=3)	100 mg (n=1)	120 mg (n=8)	160 mg (n=3)	
T _{max} , h*	4	4	4	2	1	1	
C _{max} , μg/mL	3.50	2.91 (0.856)	4.31 (0.904)	6.66	5.75 (3.18)	9.44 (2.95)	
C _{max} /dose, µg/mL/mg	0.035	0.024 (0.007)	0.027 (0.006)	0.067	0.048 (0.027)	0.059 (0.018)	
AUC ₀₋₂₄ , hr*µg/mL	53.6	30.8 (12.3)	35.2 (12.9)	67.9	38.0 (15.5)	39.0 (17.5)	
AUC _{inf} , hr*µg/mL	101	36.1 (16.7)	40.2 (18.2)	81.8	43.5 (18.4)	42.6 (20.5)	

as mean (SD) unless otherwise noted

entration-time curve: AUC ____ AUC from time 0 to infinite time: C____ maximum observed concentration: T____ time to maximum observed co

Conclusions

- The safety and tolerability of RP-3500 has been demonstrated previously⁴
- The RP2D was established as 160 mg daily on a 3 days on/4 days off schedule
 These data demonstrate that both AUC_{last} and C_{max} increase in an approximately doseproportional manner over the dose range of 5 to 200 mg given once daily - The PK profile of RP-3500 was predictable across the dose range and showed low between patient
- variability • The PK profile of RP-3500 given twice daily was comparable to that of once daily dosing
- In the patients evaluated as part of the on-going TRESR study, the T_{1/2} of RP-3500 is approximately 6 hours and generally consistent across dose groups
- The results of the food effect module show that RP-3500 can be administered in both fed or fasted states without affecting the RP-3500 levels and overall PK profile required for efficacy

Acknowledgments

- The authors would like to thank the patients, their families, and all investigators involved in this study
- · Repare Therapeutics would like to acknowledge the contributions of the participating clinical sites and study coordinators
- The authors would like to thank the Repare Clinical Study Team, Livia Gjylameti, Biljana Bazdar-Vinovrski, Joseph O'Connell, and Stephanie Guerrera for their contributions to the study
- Greg Reynolds, Richard Egolf, Bruce A. Babson, Daniel L. Ruiz, and Sheen Legaspi of BioAgilytix
- San Diego for their support in generating the plasma concentration data used in this analysis • The authors thank Yi Xu and Dapeng Zhang in the Repare Biometrics Group for generating the patient demographics information
- · Editorial assistance was provided by Mike Zbreski, PharmD of Onyx Medica, London, UK, supported by Repare Therapeutics Inc.

References

1. Bradbury A et al. Pharmacol Ther. 2020;207;107450. 2. Lecona E, Fernandez-Capetillo O. Nat Rev Cancer. 2018;18:586–595. 3. Roulston A. Presented at: AACR-NCI-EORTC 2021. Abstract P054. 4. Yap T. Presented at: AACR-NCI-EORTC 2021, Abstract CC04-01,