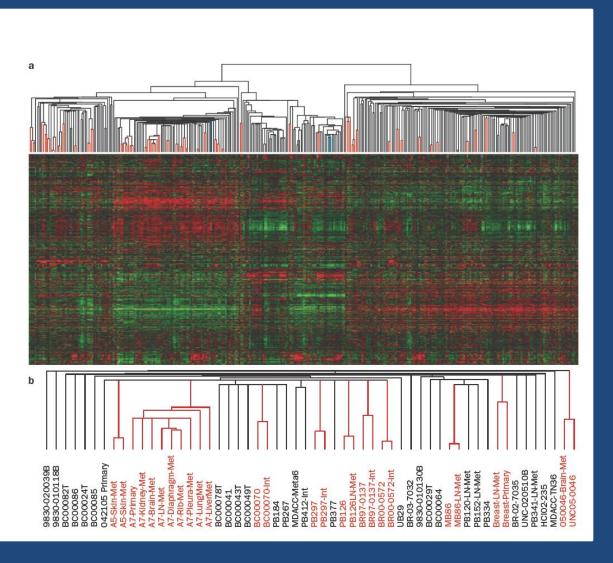


Characterization of one disease in different subtypes

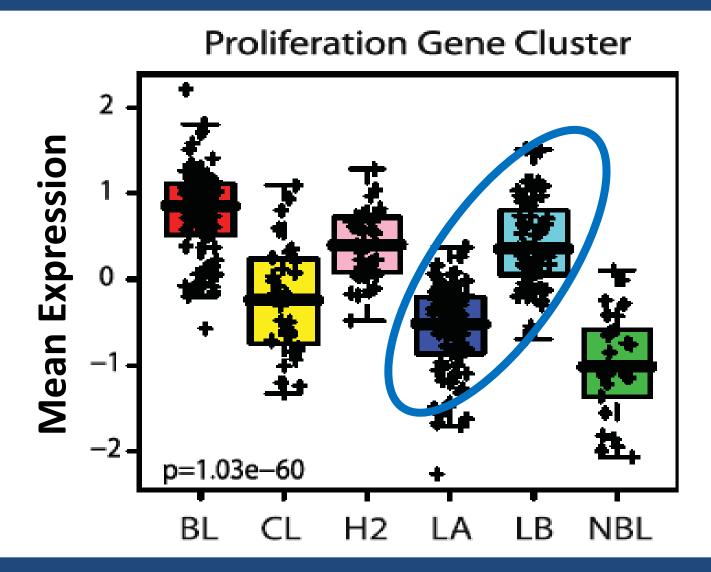

Aleix Prat, MD

Translational Genomics Unit
Vall d'Hebron Institute of Oncology (VHIO)
Barcelona, Spain


Summary of topics

Introduction and characterization.

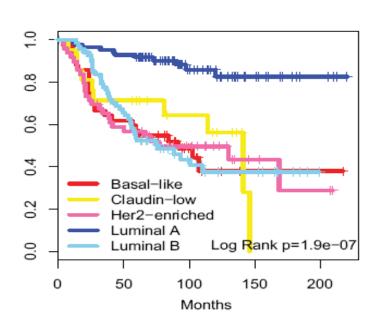
- Clinical implementation.
- Improving the current IHC-based subtype definitions.

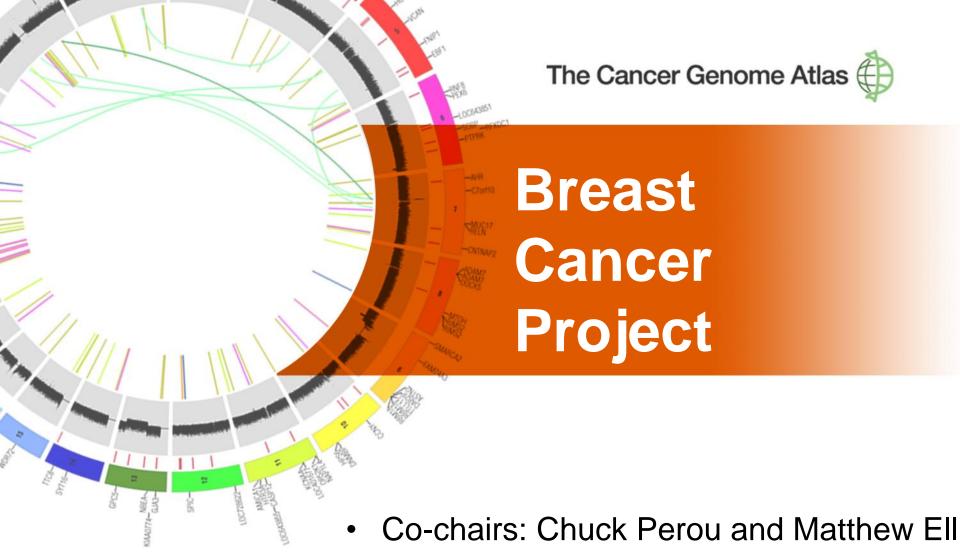



Identification of tumor individuality using global gene-expression analyses

- Supervised hierarchical clustering of breast cancer data of 367 breast samples using 1,900 intrinsic genes.
- Paired tumor samples are highlighted by the red lines in the array tree, with 41 out of 43 (95%) possible pairs being paired.

Deconstructing the molecular portraits of breast cancer


Intrinsic Subtypes


Perou et al., Nature 2000
Sorlie et al., PNAS 2001
Sorlie et al., PNAS 2003
Hu et al., BMC Genomics 2006
Herschkowitz et al., GB 2007
Cheang et al. JNCI 2008
Parker et al., JCO, Feb 2009
Prat et al., BCR 2010
Nielsen et al., CCR 2010
Cheang et al., CCR 2012
Chia et al., CCR 2012
Prat et al. BCRT 2012

TCGA Nature 2012

Prat et al. JCO 2013

Prat et al. Oncologist 2013

http://cancergenome.nih.gov/

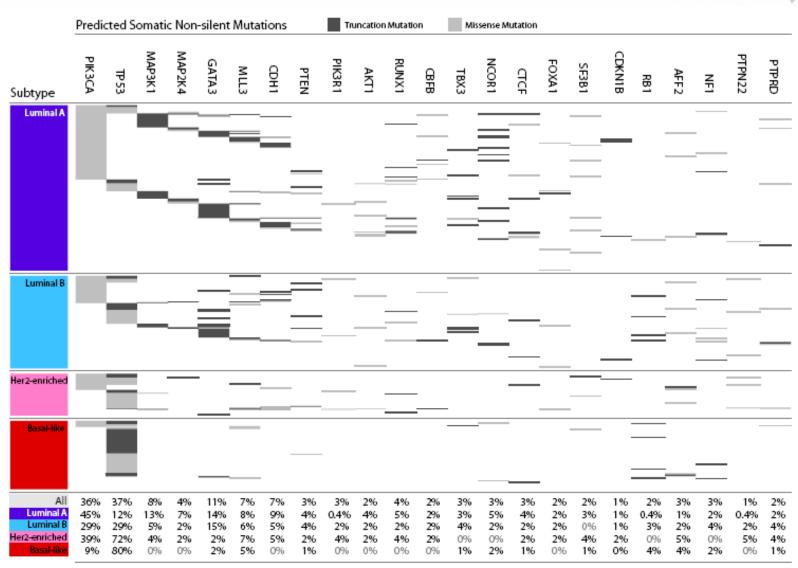
Analyses Performed

825 patients

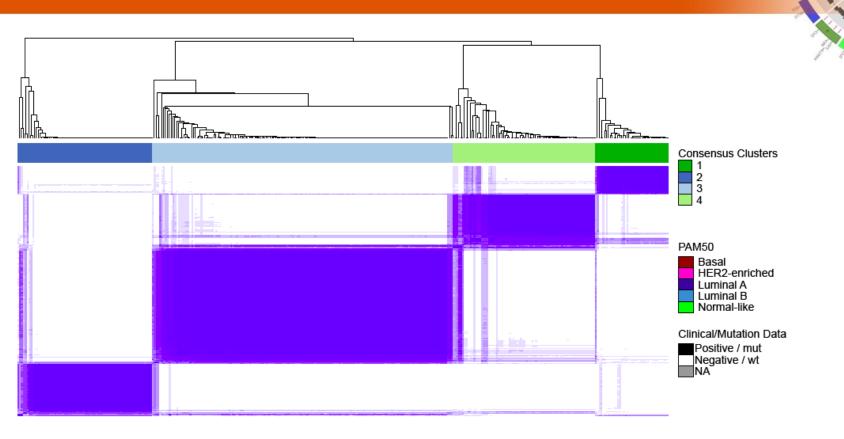
463 patients

- Gene Expression
- DNA Copy Number
- miRNA Expression
- DNA Methylation
- Exome Sequencing

348 patients


 Reverse Phase Protein Arrays

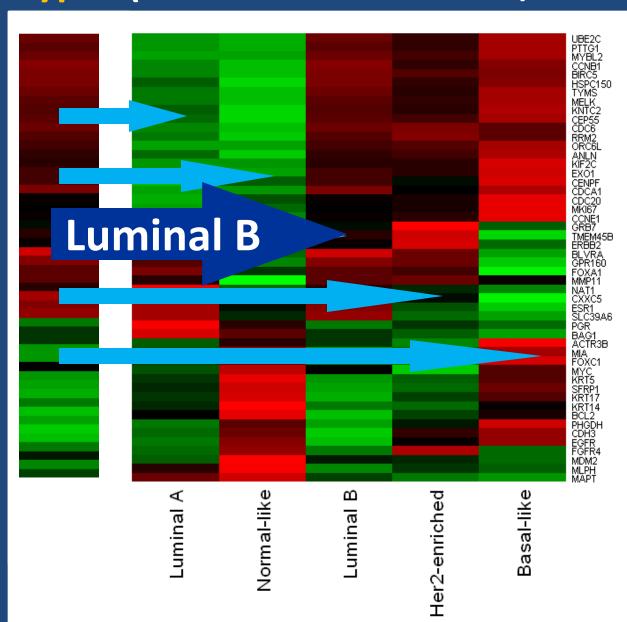
http://cancergenome.nih.gov/


Significantly Mutated Genes

SMG	All Tumor	s (n=507)
SIVIG	Mutated	FDR
TP53	187 (37%)	0.00E+00
PIK3CA	180 (36%)	0.00E+00
GATA3	54 (11%)	0.00E+00
MAP3K1	39 (8%)	0.00E+00
MLL3	37 (7%)	0.00E+00
CDH1	33 (6.5%)	0.00E+00
MAP2K4	21 (4%)	0.00E+00
RUNX1	18 (3.5%)	0.00E+00
PTEN	17 (3.4%)	0.00E+00
TBX3	13 (2.5%)	6.72E-13

Significantly Mutated Genes

Integration of all data types



• Integration of information across 5 platforms demonstrated the existence of 4 main breast cancer classes....

Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes (Parker J Clin Oncol 2009)

- The qRT-PCR assay consists of 50 genes and 5 centroids (provided at https://genome.unc.ed)
- 2. The CV classification accuracy of the 50 genes by qRT-PCR versus 2000 genes by microarray was 93%
- 3. The assay works using RNA from FFPE materials or fresh frozen tissues.
- 4. The assay is called the

"PAM50"

2011 St Gallen International Expert Consensus

Intrinsic Subtype (1)	Clinico-pathologic definition	
Luminal A	'Luminal A' ER and/or PgR positive(76) HER2 negative (77) Ki-67 low (<14%)*	Endocrine Therapy
Luminal B**	'Luminal B (HER2 negative)' ER and/or PgR positive HER2 negative Ki-67 high	Endocrine +/- Chemo
	'Luminal B (HER2 positive)' ER and/or PgR positive Any Ki-67 HER2 over-expressed or amplified	Endocrine+ Chemo + anti-H
Erb-B2 overexpression	'HER2 positive (non luminal)' HER2 over-expressed or amplified ER and PgR absent	Chemo + anti-HER2
'Basal-like'	'Triple negative (ductal)' ER and PgR absent HER2 negative	Chemo

Quote: "The endorsed clinicopathological criteria <u>are likely to be</u> refined in the future".

Goldhirsch et al. Ann Oncol 2011

Cheang et al. JNCI 2008

ER2

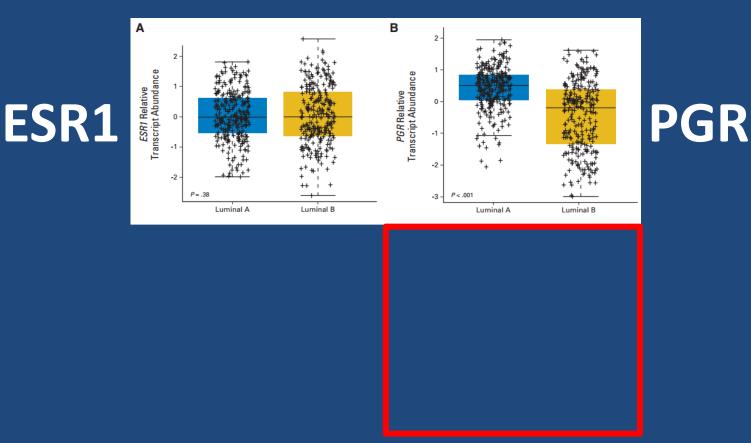
IHC-based versus PAM50 subtype definitions

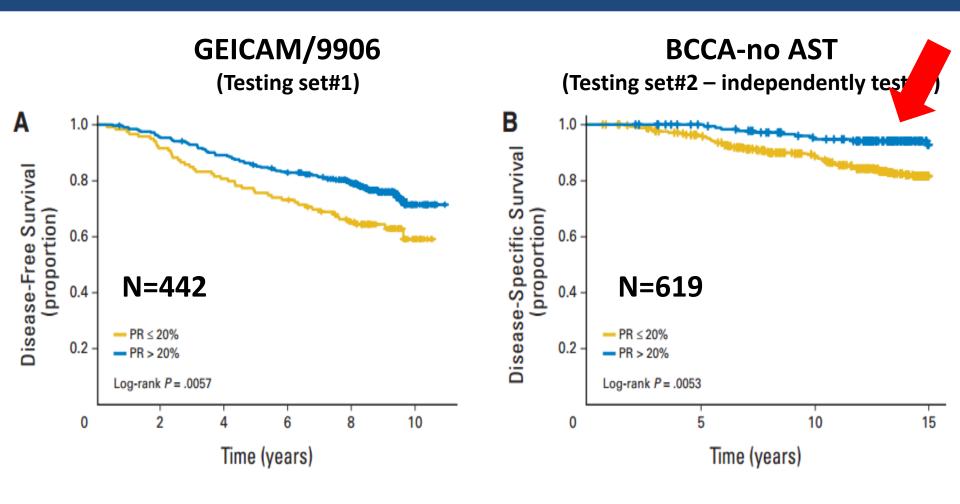
Whereas a large majority (81-85%) of Luminal A tumors was identified as IHC-Luminal A,
 35-52% of Luminal B tumors were identified as IHC-Luminal A.

				IHC-	based subty	ypes				
	IHC- Luminal A	%	IHC- Luminal B /HER2-	%	IHC- Luminal B /HER2+	%	HER2+	%	Triple- negative	%
BCCA-tamoxifen										
Luminal A	286	81.5	50	14.2	15	4.3	-	-	-	-
Luminal B	109	35.4	169	54.9	30	9.7	-	-	-	-
GEICAM/9906										
Luminal A	231	85.2	32	11.8	4	1.5	0	0	4	1.5
Luminal B	134	51.9	77	29.8	30	11.6	7	2.7	10	3.9

 Within HR+/HER2- disease, the <u>concordance kappa value</u> between the PAM50 and IHC-based Luminal A and B definitions was 0.196 and 0.407 (<u>slight to fair agreement</u>) in the GEICAM/9906 cohorts and BCCA-tamoxifen and, respectively.

Gene expression differences between the prototypical Luminal A and B tumors


A total of 1,539 genes (348 up-regulated and 1,191 down-regulated in Luminal A tumors) were found differentially expressed (False Discovery Rate [FDR] <1%).


GO:0030154	cell differentiation
GO:0007584	response to nutrient
GO:0009991	response to extracellular stimulus
GO:0048869	cellular developmental process
GO:0042221	response to chemical stimulus
GO:0032501	multicellular organismal process
GO:0045444	fat cell differentiation
GO:0007155	cell adhesion
GO:0030198	extracellular matrix organization
GO:0008544	epidermis development
	opiaciiiio actolopiiioiii
	mitotic cell cycle
	mitotic cell cycle
GO:0000278	mitotic cell cycle cell cycle
GO:0000278 GO:0007049 GO:0000279	mitotic cell cycle cell cycle
GO:0000278 GO:0007049 GO:0000279 GO:0031396	mitotic cell cycle cell cycle M phase
GO:0000278 GO:0007049 GO:0000279 GO:0031396	mitotic cell cycle cell cycle M phase regulation of protein ubiquitination
GO:0000278 GO:0007049 GO:0000279 GO:0031396 GO:0002376 GO:0006974	mitotic cell cycle cell cycle M phase regulation of protein ubiquitination immune system process
GO:0000278 GO:0007049 GO:0000279 GO:0031396 GO:0002376 GO:0006974	mitotic cell cycle cell cycle M phase regulation of protein ubiquitination immune system process response to DNA damage stimulus spindle organization
GO:0000278 GO:0007049 GO:0000279 GO:00031396 GO:0006974 GO:0007051 GO:0006281	mitotic cell cycle cell cycle M phase regulation of protein ubiquitination immune system process response to DNA damage stimulus spindle organization

Gene and protein expression differences between Luminal A and B tumors in GEICAM/9906 cohort

PR gene or protein, but not ER gene or protein, was found <u>significantly up-regulated</u> in <u>Luminal A tumors</u>.

Survival outcomes within IHC-Luminal A based on the % of PR+ cells in 2 testing sets

Therefore, the new proposed
 IHC-based definition of Luminal A tumors is

HR+/HER2-/Ki67<14% and PR>20%

Conclusions

- Breast cancer is an heterogeneous disease in terms of gene, protein and miRNA expression and DNA somatic mutations, copy-number and methylation..., all of which converge into 4 main intrinsic molecular subtypes (Luminal A and B, HER2-enriched and Basal-like).
- Identification of these molecular entities in the clinical setting will be possible with the PAM50 subtype predictor.
- Surrogate definitions of the intrinsic subtypes using a combination of 3-4 biomarkers (IHC and/or gene-based) are suboptimal.
- Including percentage of PR+ tumors cells can improve the current St.
 Gallen IHC-based definition of the Luminal A subtype.
- <u>To improve patient outcome and treatment efficacy</u>, biomarkers of prognosis and response within each subtype will be needed and clinical trials focusing on a particular subtype are currently underway.

Acknowledgements

Patricia Galván Maria Vidal Ana Vivancos Barbara Adamo Javier Cortés Josep Tabernero

University of North Carolina, NC, USA

Chuck Perou Lisa Carey Maggie Cheang Joel S. Parker Barbara Adamo

Matth

Washington University in St Louis, MO, USA

Matthew Ellis Elaine Mardis Sherri Davies Jackie Snider Tammi Vickery Mark Watson

GEICAM, Spain

Miguel Martín Eva Carrasco Rosalía Caballero Maribel Casas

University of British Columbia, Canada

Torsten Nielsen Stephen K. Chia David Voduc Samuel Leung

University of Utah, UT, USA

Phil Bernard Mark Ebbert Inje Stijleman Roy Bastien