

#### PERSONALIZED MEDICINE SYMPOSIUM

European Society for Medical Oncology

#### Targeting the HER/EGFR family in breast, lung and colorectal cancers

#### SIGNALLING PATHWAYS IN CANCER

#### Sitges, Barcelona, Spain 1-2 March 2013



# Pitfalls and challenges with tumor tissue specimens

Federico Rojo IIS-Fundacion Jimenez Diaz, Madrid IMIM-Hospital del Mar, Barcelona

Sitges, March 1st 2013



ESMO Signalling Pathway Symposia

#### No conflicts of interest to declare



### Outline of the presentation

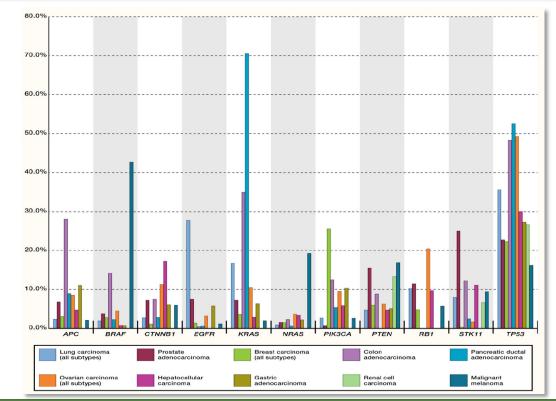
*Topic #1.* State of the art in predictive biomarkers to anti-HER therapies in lung, colorectal and breast cancer

*Topic #2.* Upcoming predictive biomarkers to anti-HER2 therapies

*Topic #3.* Laboratory policies: considerations about type of assay, sample selection, optimization in use and quality:

Workflow with tumor samples Quality control Primary or metastatic tissue? Type of assay

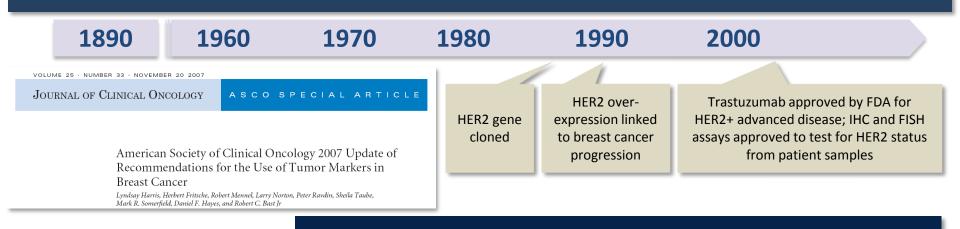
### Outline of the presentation


## *Topic #1.* State of the art in predictive biomarkers to anti-HER therapies in lung, colorectal and breast cancer

Topic #2. Upcoming predictive biomarkers to anti-HER2 therapies

*Topic #3.* Laboratory policies: considerations about type of assay, sample selection, optimization in use and quality:

Workflow with tumor samples Quality control Primary or metastatic tissue? Type of assay


#### The genetic basis for cancer treatment decisions



| Genetic Marker     | Application                                                                                   | Drug                           |
|--------------------|-----------------------------------------------------------------------------------------------|--------------------------------|
| BCR-ABL            | Ph+ CML; Ph+ ALL                                                                              | Imatinib, dasatinib, nilotinib |
| BCR-ABL/T315I      | Resistance to anti-BCR-ABL agents                                                             | Imatinib, dasatinib, nilotinib |
| BRAF V600E         | Metastatic melanoma                                                                           | Vemurafenib                    |
| BRCA1/2            | Metastatic ovarian cancer and breast cancer with BRCA 1/2 mutations                           | Olaparib, veliparib, iniparib  |
| c-Kit              | Kit (CD117)-positive malignant GIST                                                           | Imatinib                       |
| EGFR               | Locally advanced, unresectable, or metastatic NSCLC                                           | Erlotinib, gefitinib           |
| EGFR T790M         | Resistance to EGFR tyrosine kinase inhibitors in advanced NSCLC                               | Erlotinib, gefitinib           |
| EML4-ALK           | ALK kinase inhibitor for metastatic NSCLC with this fusion gene                               | Crizotinib                     |
| HER2 amplification | HER2-positive breast cancer or metastatic gastric or gastroesophageal junction adenocarcinoma | Trastuzumab                    |
| KRAS               | Resistance to EGFR antibodies in metastatic colorectal cancer                                 | Cetuximab, panitumumab         |
| PML/RAR            | Acute promyelocytic leukemia                                                                  | ATRA, arsenic trioxide         |
| TPMT               | Deficiency is associated with increased risk of myelotoxicity                                 | Mercaptopurine, azathioprine   |
| UGT1A1             | Homozygosity for UGT1A1*28 is associated with risk of toxicity                                | Irinotecan                     |
| DPD                | Deficiency is associated with risk of severe toxicity                                         | 5-Fluorouracil                 |

Bernards, R. Cell 2012 Dancey, JE. et al. Cell 2012

#### HER2 evaluation as a marker in breast cancer



- HER2 expression and/or amplification should be evaluated in every primary invasive breast cancer, to guide selection of trastuzumab.
- Not recommended as prognostic in early breast cancer in absence of systemic therapy.
- Refer to "ASCO/CAP Clinical Practice Guidelines on HER2 Testing in Breast Cancer" regarding analysis of tissue HER2 status. (Wolff A.C., et al. J Clin Oncol. 25:118-45, 2007)
- Use IHC (expression) or FISH (amplification) tests to identify HER2 levels and identify benefit (or lack thereof) of trastuzumab therapy, in either adjuvant or metastatic settings.
- If considering chemotherapy for a patient with HER2 positive breast cancer who will not receive trastuzumab, strongly consider an anthracycline (if no contraindications).
- Use of HER2 not recommended to guide use of adjuvant taxane chemotherapy.
- Should not be used to withhold endocrine therapy for a patient with hormonereceptor positive breast cancer, nor should it be used to select one specific type of endocrine therapy over another.
- Measuring circulating extracellular domain of HER2 is not currently recommended for any clinical setting.



## Highlights of the St Gallen International Expert Consensus on early breast cancer 2011

#### special article

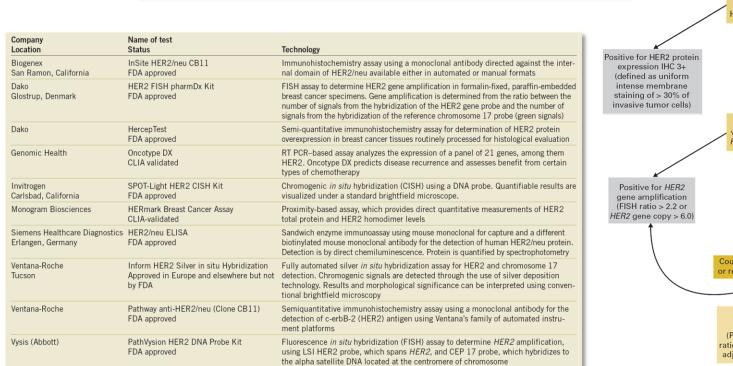
Annals of Oncology 22: 1736–1747, 2011 doi:10.1093/annonc/mdr304 Published online 27 June 2011

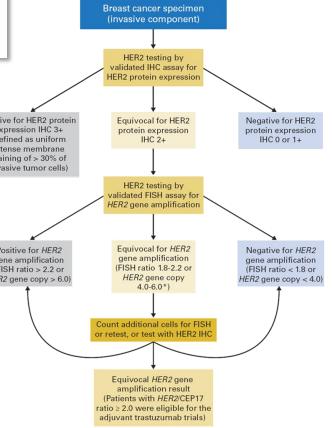
#### Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011

A. Goldhirsch<sup>1</sup>\*, W. C. Wood<sup>2</sup>, A. S. Coates<sup>3</sup>, R. D. Gelber<sup>4</sup>, B. Thürlimann<sup>5</sup>, H.-J. Senn<sup>6</sup> & Panel members<sup>†</sup>

| Intrinsic Subtype (1)   | Clinico-pathologic definition                                                                                       | Notes                                                                                                                                                                                                                                                                                                                                                                                                                        | Type of therapy                            | Notes on therapy                                                                                                                    |
|-------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Luminal A               | <b>'Luminal A'</b><br>ER and/or PgR positive(76)<br>HER2 negative (77)<br>Ki-67 low ( <b>&lt;</b> 14%) <sup>*</sup> | This cut-point for Ki-67 labelling index was established by comparison<br>with PAM50 intrinsic subtyping (7). Local quality control of Ki-67<br>staining is important.                                                                                                                                                                                                                                                       | Endocrine therapy alone                    | Few require cytotoxics (e.g. high nodal status or<br>other indicator of risk: see text).                                            |
| Luminal B <sup>**</sup> | <b>'Luminal B (HER2 negative)'</b><br>ER and/or PgR positive<br>HER2 negative<br>Ki-67 high                         | Genes indicative of higher proliferation are markers of poor prognosis in multiple<br>genetic assays (78). If reliable Ki-67 measurement is not available, some alternative<br>assessment of tumor proliferation such as grade may be used to distinguish<br>between 'Luminal A' and 'Luminal B (HER2 negative)'.                                                                                                            | Endocrine ± cytotoxic therapy              | Inclusion and type of cytotoxics may depend on<br>level of endocrine receptor expression,<br>perceived risk and patient preference. |
|                         | <b>'Luminal B (HER2 positive)'</b><br>ER and/or PgR positive<br>Any Ki-67<br>HER2 over-expressed or amplified       | Both endocrine and anti-HER2 therapy may be indicated.                                                                                                                                                                                                                                                                                                                                                                       | Cytotoxics + anti-HER2 + endocrine therapy | No data are available to support the omission of cytotoxics in this group.                                                          |
| Erb-B2 overexpression   | <b>'HER2 positive (non luminal)'</b><br>HER2 over-expressed or amplified<br>ER and PgR absent                       |                                                                                                                                                                                                                                                                                                                                                                                                                              | Cytotoxics + anti-HER2                     | Patients at very low risk (e.g. pT1a and node<br>negative) may be observed without<br>systemic adjuvant treatment.                  |
| 'Basal-like'            | <b>'Triple negative (ductal)'</b><br>ER and PgR absent<br>HER2 negative                                             | Approximately 80% overlap between 'triple negative' and intrinsic 'basal-like' subtype<br>but 'triple negative' also includes some special histological types such as (typical)<br>medullary and adenoid cystic carcinoma with low risks of distant recurrence.<br>Staining for basal keratins (79) although shown to aid selection of true<br>basal-like tumors, is considered insufficiently reproducible for general use. | Cytotoxics                                 |                                                                                                                                     |
|                         | Special histological types'*                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              | Endocrine therapy                          |                                                                                                                                     |
|                         | A. Endocrine responsive                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                              | Cytotoxics                                 | Medullary and adenoid cystic carcinomas may                                                                                         |
|                         | B. Endocrine nonresponsive                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            | not require any adjuvant cytotoxics (if node negative).                                                                             |

#### Molecular assays to select therapy in HER2 breast tumors


VOLUME 25 · NUMBER 1 · JANUARY 1 2007


JOURNAL OF CLINICAL ONCOLOGY

ASCO SPECIAL ARTICLE

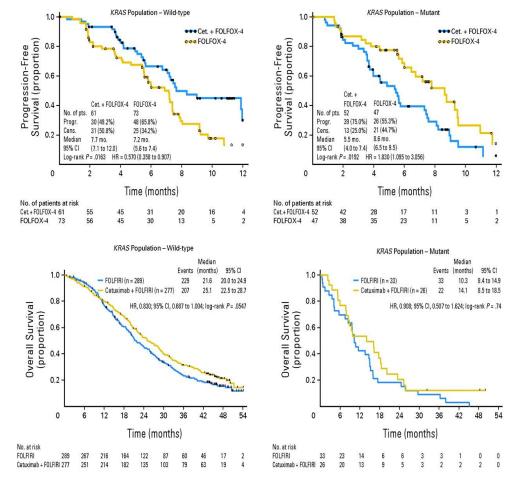
#### American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer

Antonio C. Wolff, M. Elizabeth H. Hammond, Jared N. Schwartz, Karen L. Hagerty, D. Craig Allred, Richard J. Cote, Mitchell Dowsett, Patrick L. Fitzgibbons, Wedad M. Hanna, Amy Langer, Lisa M. McShane, Soonmyung Paik, Mark D. Pegram, Edith A. Perez, Michael F. Press, Anthony Rhodes, Catharine Sturgeon, Sheila E. Taube, Raymond Tubbs, Gail H. Vance, Marc van de Vijver, Thomas M. Wheeler, and Daniel F. Hayes





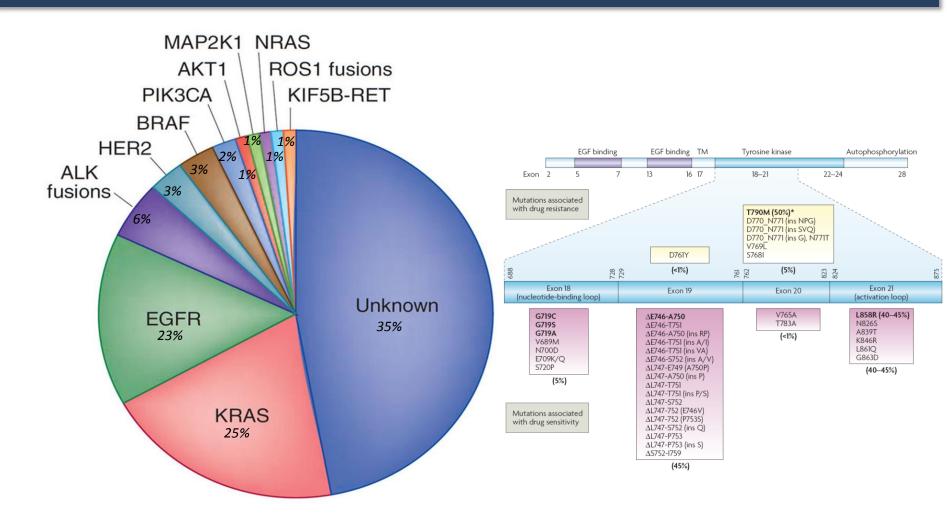
# Predictive biomarkers to anti-EGFR therapies in mCRC




Based on systematic reviews of the relevant literature, all patients with metastatic colorectal carcinoma who are candidates for anti-EGFR antibody therapy should have their tumor tested for KRAS mutations in a CLIA-accredited laboratory. If KRAS mutation in codon 12 or 13 is detected, then patients with metastatic colorectal carcinoma should not receive anti-EGFR antibody therapy as part of their treatment.

### Predictive biomarkers to anti-EGFR therapies: KRAS mutations

|                                                                                |                                                                 |                                                           | KRAS WT                                                                                                                                        |                                             |                            | KRAS Mutated                                                                                                           |                                                              |  |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Study and Population                                                           | Treatments by Arm                                               | Variable                                                  | Antibody A                                                                                                                                     | rm Co                                       | ontrol Arm                 | Antibody Arm                                                                                                           | Cont                                                         |  |
| van Cutsem et al,<br>2008 <sup>10</sup> ;<br>CRYSTAL trial of                  | FOLFIRI ± cetuximab                                             | No. of patients<br>Response rate, %<br>95% Cl             | 172<br>59.3<br>51.6 to 66.                                                                                                                     | .7 31                                       | 176<br>43.2<br>5.8 to 50.9 | 105<br>36.2<br>27.0 to 46.2                                                                                            | 29.9                                                         |  |
| first line therapy                                                             |                                                                 | P<br>Median PFS,<br>months                                | 9.9                                                                                                                                            | .0025                                       | 8.7                        | 7.6                                                                                                                    | .46                                                          |  |
|                                                                                |                                                                 | HR<br>P                                                   |                                                                                                                                                | 0.68<br>.017                                |                            |                                                                                                                        | .07<br>.47                                                   |  |
| Bokemeyer et al,<br>2008 <sup>3</sup> ; OPUS<br>trial of first line<br>therapy | FOLFOX ± cetuximab                                              | No. of patients<br>Response rate, %<br>95% Cl<br><i>P</i> | 61<br>60.7<br>47.3 to 72.                                                                                                                      | .9 24                                       | 73<br>37.0<br>3.0 to 49.1  | 52<br>32.7<br>20.3 to 47.1                                                                                             | 34.1<br>.106                                                 |  |
|                                                                                |                                                                 | OR<br>95% CI<br>Median PFS,<br>months                     | 7.7                                                                                                                                            | 2.54<br>1.24 to 5.23                        | 7.2                        | 0.2<br>5.5                                                                                                             | 0.51<br>2 to 1.15                                            |  |
|                                                                                |                                                                 | HR<br>P                                                   |                                                                                                                                                | 0.57<br>.016                                |                            |                                                                                                                        | .83<br>.0192                                                 |  |
| Punt et al, 2008 <sup>9</sup> ;<br>CAIRO2 trial of<br>first line therapy       | (Capecitabine +<br>oxaliplatin +<br>bevacizumab) ±<br>cetuximab | No. of patients<br>Median PFS,<br>months<br>P             | 153<br>10.5                                                                                                                                    | .10                                         | 152<br>10.7                | 93<br>8.6                                                                                                              | .043                                                         |  |
|                                                                                |                                                                 | Median OS,<br>months                                      | 22.2                                                                                                                                           |                                             | 23.0                       | 19.1                                                                                                                   | -                                                            |  |
| Amado et al, 2008 <sup>1</sup> ;<br>chemotherapy-                              | Panitumumab v<br>best supportive                                | P<br>No. of patients<br>Response rate, %                  | 124<br>17                                                                                                                                      | .49                                         | 119<br>0                   | 84<br>0                                                                                                                | .35                                                          |  |
| refractory<br>disease                                                          | care                                                            | Median PFS,<br>weeks<br>HR                                | 12.3                                                                                                                                           | 0.45                                        | 7.3                        | 7.4                                                                                                                    | ).99                                                         |  |
| Karapetis et al,                                                               | Cetuximab v best                                                | 95% CI<br>No. of patients                                 | 117                                                                                                                                            | 0.34 to 0.59                                | 113                        | 0.7                                                                                                                    | 3 to 1.36                                                    |  |
| 2008 <sup>6</sup> ; second-<br>or subsequent-<br>line therapy                  | supportive care                                                 | Response rate, %<br>Median PFS,<br>months                 | 12.8<br>3.7                                                                                                                                    |                                             | 0<br>1.9                   | 1.2<br>1.8                                                                                                             |                                                              |  |
|                                                                                |                                                                 | HR<br>95% CI<br><i>P</i>                                  |                                                                                                                                                | 0.40<br>0.30 to 0.54<br>< .001              |                            | 0.7                                                                                                                    | 0.99<br>3 to 1.35<br>.96                                     |  |
|                                                                                |                                                                 | Median OS,<br>months                                      | 9.5                                                                                                                                            |                                             | 4.8                        | 4.5                                                                                                                    |                                                              |  |
|                                                                                |                                                                 | P<br>OS at 1 year, %<br>HR (death)                        | 28.3                                                                                                                                           | 0.55                                        | on, <i>KRAS</i> mi<br>20.1 |                                                                                                                        | .98                                                          |  |
|                                                                                |                                                                 | 95% CI<br>P                                               |                                                                                                                                                | 0.41 to 0.74<br>< .001                      |                            |                                                                                                                        | 0 to 1.37<br>.89                                             |  |
|                                                                                | gle-Arm Studies of Treatme                                      |                                                           |                                                                                                                                                |                                             | tibodies and               |                                                                                                                        |                                                              |  |
| Study and Population<br>Lievre et al, 2008 <sup>8</sup> , second               |                                                                 | nts by Arm                                                | V<br>No. of patients                                                                                                                           | ariable                                     |                            | KRAS WT<br>65                                                                                                          | KRAS N<br>24                                                 |  |
| therapy                                                                        | Hine Cetuxinau                                                  |                                                           | P<br>PFS, weeks                                                                                                                                |                                             |                            | 40<br>.001<br>31.4                                                                                                     | 24                                                           |  |
|                                                                                |                                                                 |                                                           | 95% Cl<br>P<br>OS, months                                                                                                                      |                                             |                            | 19.4 to 36<br>.0001<br>14.3                                                                                            | 8 to                                                         |  |
|                                                                                |                                                                 |                                                           | 95% CI<br>P                                                                                                                                    |                                             |                            | 9.4 to 20<br>_026                                                                                                      | 5.1 to                                                       |  |
| De Roock et al, 2008 <sup>4</sup>                                              | Cetuximab alon<br>irinotecan                                    | e v with                                                  | No. of patients<br>Response rate<br>P (cetuximab +                                                                                             |                                             |                            | 57<br>41<br>.000001                                                                                                    | 46<br>0                                                      |  |
|                                                                                |                                                                 |                                                           |                                                                                                                                                |                                             |                            | .126                                                                                                                   |                                                              |  |
|                                                                                |                                                                 |                                                           | P (cetuximab ale<br>PFS cetuximab                                                                                                              |                                             | weeks                      | 34                                                                                                                     | 12                                                           |  |
|                                                                                |                                                                 |                                                           | P (cetuximab ale<br>PFS cetuximab<br>95% Cl<br>P                                                                                               | + irinotecan                                | weeks                      | 34<br>28.5 to 40.0<br>.016                                                                                             | 5.4 to                                                       |  |
|                                                                                |                                                                 |                                                           | P (cetuximab ak<br>PFS cetuximab<br>95% Cl<br>P<br>PFS cetuximab,<br>95% Cl<br>P                                                               | + irinotecan<br>weeks                       |                            | 34<br>28.5 to 40.0<br>.016<br>12<br>4.2 to 20.0<br>.351                                                                | 5.4 to<br>12<br>7.0 to                                       |  |
|                                                                                |                                                                 |                                                           | P (cetuximab all<br>PFS cetuximab<br>95% Cl<br>P<br>PFS cetuximab,<br>95% Cl<br>P<br>OS cetuximab -<br>95% Cl<br>P                             | + irinotecan<br>weeks                       |                            | 34<br>28.5 to 40.0<br>.016<br>12<br>4.2 to 20.0<br>.351<br>44.7<br>28.4 to 61.0<br>.003                                | 5.4 to<br>12<br>7.0 to<br>27<br>9.5 to                       |  |
|                                                                                |                                                                 |                                                           | P (cetuximab all<br>PFS cetuximab<br>95% CI<br>P<br>PFS cetuximab,<br>95% CI<br>P<br>OS cetuximab -<br>95% CI<br>P<br>OS, weeks<br>95% CI      | + irinotecan<br>weeks                       |                            | 34<br>28.5 to 40.0<br>016<br>12<br>4.2 to 20.0<br>.351<br>44.7<br>28.4 to 61.0<br>.003<br>27<br>8.9 to 45.1            | 5.4 to<br>12<br>7.0 to<br>27                                 |  |
| Khambata-Ford et al, 2007                                                      | 7 Cetuximab; see<br>treatment                                   | cond- or third-line                                       | P (sotuximab aik<br>PFS cetuximab<br>95% Cl<br>P<br>OS cetuximab<br>95% Cl<br>P<br>OS, weeks<br>95% Cl<br>P<br>No. of patients                 | + irinotecan<br>weeks<br>+ irinotecan,      |                            | 34<br>28.5 to 40.0<br>016<br>12<br>4.2 to 20.0<br>351<br>44.7<br>28.4 to 61.0<br>.003<br>27                            | 5.4 to<br>12<br>7.0 to<br>27<br>9.5 to<br>25                 |  |
| Khambata-Ford et al, 2007 <sup>6</sup>                                         | treatment                                                       | ond- or third-line<br>chemotherapy                        | P (cetuximab ale<br>PFS cetuximab<br>95% CI<br>P<br>PFS cetuximab,<br>95% CI<br>P<br>OS cetuximab -<br>95% CI<br>P<br>OS, weeks<br>95% CI<br>P | + irinotecan<br>weeks<br>+ irinotecan,<br>% |                            | 34<br>28.5 to 40.0<br>016<br>12<br>4.2 to 20.0<br>351<br>44.7<br>28.4 to 61.0<br>003<br>27<br>8.9 to 45.1<br>330<br>50 | 5.4 to<br>12<br>7.0 to<br>27<br>9.5 to<br>25<br>0.0 to<br>30 |  |


*Cetuximab plus oxaliplatin, leucovorin, and fluorouracil (FOLFOX-4) or FOLFOX-4 alone Cetuximab plus irinotecan, fluorouracil, and leucovorin (FOLFIRI) or FOLFIRI alone* 



Bokemeyer, C. et al. J Clin Oncol 2009 Van Cutsem, E. et al. J Clin Oncol 2011

Allegra, CJ. et al.J Clin Oncol 2009

### Potential predictive biomarkers in NSCLC



Sequist, A et al. Ann Oncol 2011 Bergethon J et al. J Clin Oncol 2012

## Predictive biomarkers to anti-EGFR therapies in NSCLC

JOURNAL OF CLINICAL ONCOLOGY A SCO SPECIAL ARTICLE American Society of Clinical Oncology Provisional Clinical Opinion: Epidermal Growth Factor Receptor (*EGFR*) Mutation Testing for Patients With Advanced Non–Small-Cell Lung Cancer Considering First-Line EGFR Tyrosine Kinase Inhibitor Therapy Vicki Leigh Keedy, Sarah Temin, Mark R. Somerfield, Mary Beth Beasley, David H. Johnson, Lisa M. McShane, Daniel T. Milton, John R. Strawn, Heather A. Wakelee, and Giuseppe Giaccone

On the basis of the results of five phase III randomized controlled trials, patients with NSCLC who are being considered for first-line therapy with an EGFR TKI (patients who have not previously received chemotherapy or an EGFR TKI) should have their tumor tested for EGFR mutations to determine whether an EGFR TKI or chemotherapy is the appropriate first-line therapy.

clinical practice guidelines

Annals of Oncology 21 (Supplement 5): v116–v119, 2010 doi:10.1093/annonc/mdq189

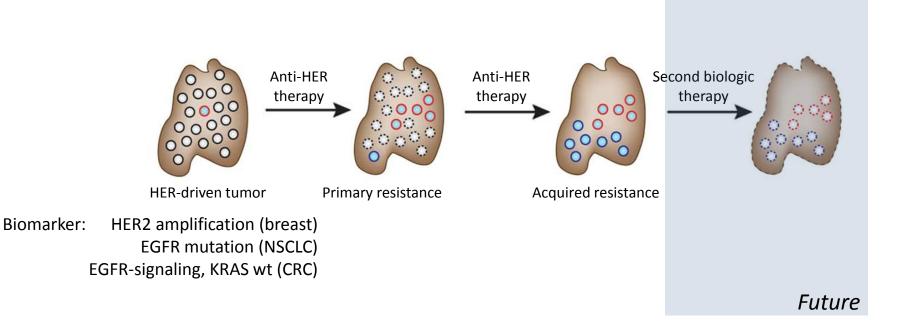
Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and followup

G. D'Addario<sup>1</sup>, M. Früh<sup>2</sup>, M. Reck<sup>3</sup>, P. Baumann<sup>4</sup>, W. Kle On behalf of the ESMO Guidelines Working Group\*

Use of predictive markers for treatment

Activating EGFR mutations (Exons 19, 21) are predictive for response and progression-free survival to the tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib based on several trials. The incidence of EGFR mutations in a Caucasian population is  $\sim$ 10%. Higher rates are observed in never-smokers, in East-Asians, in patients with adenocarcinoma subtype and in women. Further prognostic and predictive molecular markers have been described but not prospectively validated.

### Outline of the presentation

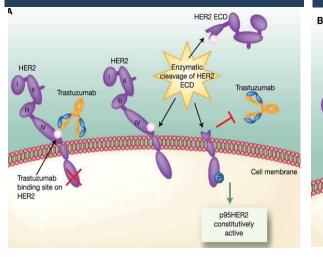

*Topic #1.* State of the art in predictive biomarkers to anti-HER therapies in lung, colorectal and breast cancer

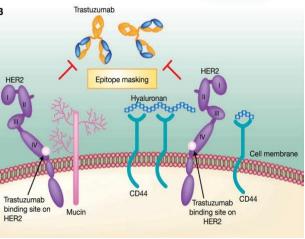
#### *Topic #2.* Upcoming predictive biomarkers to anti-HER2 therapies

*Topic #3.* Laboratory policies: considerations about type of assay, sample selection, optimization in use and quality:

Workflow with tumor samples Quality control Primary or metastatic tissue? Type of assay

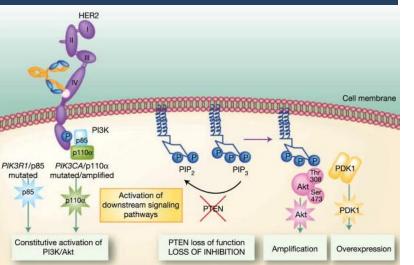
## Resistance mechanisms to anti-HER therapies in cancer: primary and acquired resistance



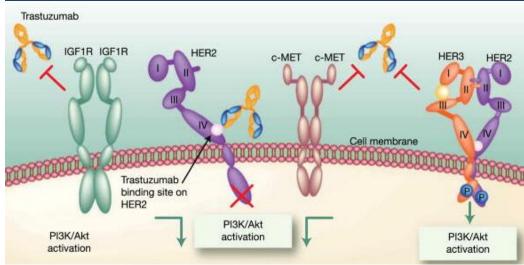


HER-driven cell
Primary resistant cell
Acquired resistant cell

#### Resistance mechanisms to anti-HER2 therapy in breast cancer

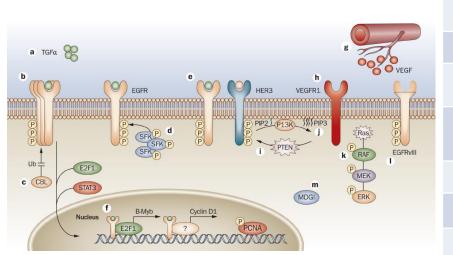
#### Constitutively active truncated HER2


Epitope masking by MUC4 or CD44/ polymeric hyaluronan complex Failure to trigger immune-mediated mechanisms





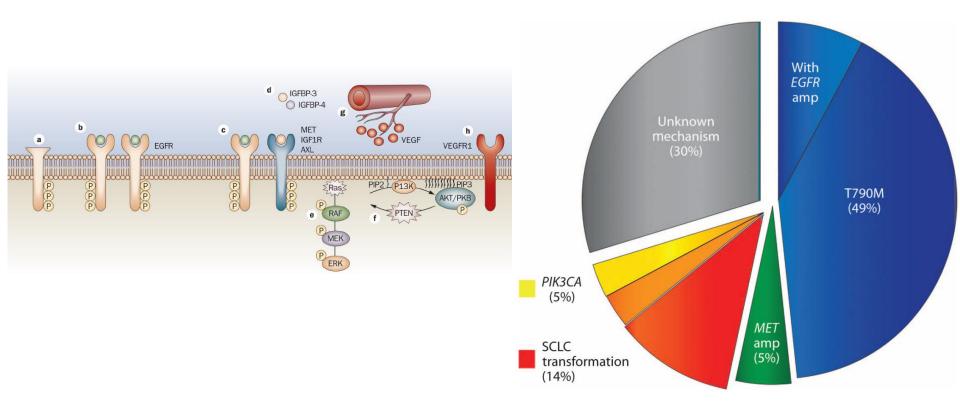

#### Signaling for degranulation No activation of ADCC WBC WBC FcyRIII F158 polymorphism HER ADCC Trastuzumab Cytotoxic No cytotoxic effect effect **Tumor cell** Tumor cell


#### Upregulation of HER2 downstream signaling pathways

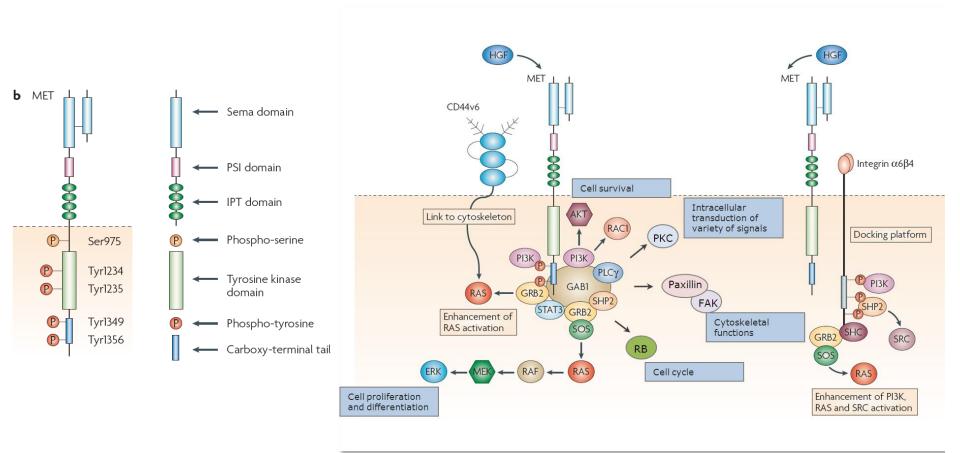


#### Signaling through an alternate receptor and/or pathway




# Predictive biomarkers to anti-EGFR antibodies




| Biomarker                                       | Prevalence | Detection<br>method                                       | Level of<br>evidence          | Regulatory<br>status    |
|-------------------------------------------------|------------|-----------------------------------------------------------|-------------------------------|-------------------------|
| KRAS mutation                                   | 40%        | Direct sequencing, pyrosquencing, PCR                     | l (c12, 13), ll<br>(c61, 146) | Adopted by FDA,<br>ASCO |
| BRAF mutation                                   | 10%        | Direct sequencing, pyrosquencing, PCR                     | IIA                           | Under evaluation        |
| PI3K mutation                                   | 5-10%      | Direct sequencing, pyrosquencing, PCR                     | IIB                           | Under evaluation        |
| P53 mutation                                    | 1-5%       | Direct sequencing,<br>pyrosquencing, PCR,<br>IHC          | IIB                           | Under evaluation        |
| PTEN deletion                                   | 20%        | IHC, direct<br>sequencing,<br>methylation-specific<br>PCR | IIB                           | Under evaluation        |
| EGFR CNV                                        | 40%        | FISH, direct sequencing                                   | Ш                             | Under evaluation        |
| EGFR mutation                                   | 5%         | Direct sequencing,<br>PCR                                 | Ш                             | Under evaluation        |
| HER2 CNV                                        | 10%        | FISH, direct sequencing                                   | Ш                             | Under evaluation        |
| HER2 mutation                                   | 1%         | Direct sequencing, pyrosquencing, PCR                     | Ш                             | Under evaluation        |
| MET CNV, mutation,<br>expression                | 10%        | IHC, FISH, direct<br>sequencing,pyrosque<br>ncing, PCR    | III                           | Under evaluation        |
| Constitutive<br>activation of EGFR<br>effectors | 50%        |                                                           | Ш                             | Under evaluation        |
| Fcg receptor polymorphism                       | unknown    | Genotyping                                                | III                           | Under evaluation        |
| Angiogenesis                                    | unknown    | Direct sequencing,<br>PCR, IHC                            | III                           | Under evaluation        |

Wheeler, DL. et al. Nat Rev Clin Oncol 2010 Ross, JS. et al. Am J Clin Pathol 2011

### Predictive biomarkers to anti-EGFR TKI



# MET pathway regulates EMT phenotype and induces EGFR-inhibition resistance



### Outline of the presentation

*Topic #1.* State of the art in predictive biomarkers to anti-HER therapies in lung, colorectal and breast cancer

#### Topic #2. Upcoming predictive biomarkers to anti-HER2 therapies

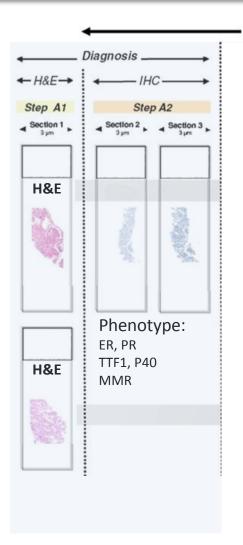
## *Topic #3.* Laboratory policies: considerations about type of assay, sample selection, optimization in use and quality:

Workflow with tumor samples Quality control Primary or metastatic tissue? Type of assay

# Benchmarking of EGFR mutation diagnostics in NSCLC

clinical practice guidelines

Annals of Oncology 21 (Supplement 5): v116–v119, 2010 doi:10.1093/annonc/mdq189

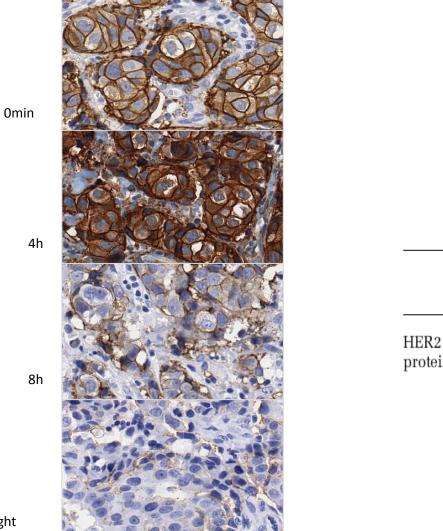

#### Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and followup

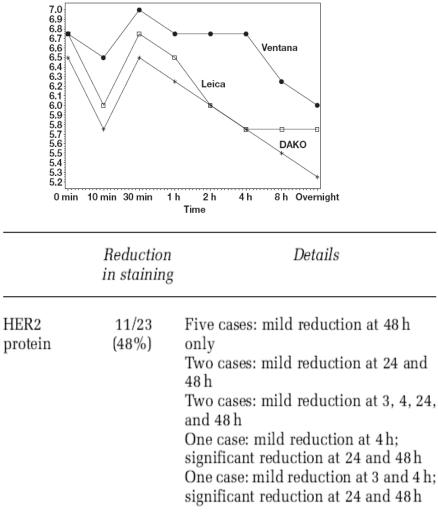
G. D'Addario<sup>1</sup>, M. Früh<sup>2</sup>, M. Reck<sup>3</sup>, P. Baumann<sup>4</sup>, W. Klepetko<sup>5</sup> & E. Felip<sup>6</sup> On behalf of the ESMO Guidelines Working Group\*

"If molecular testing is planned, appropriate biopsy methods should be utilized to obtain sufficient tissue for both pathological diagnosis and molecular analysis and the specimens should be handled appropriately."

# Benchmarking of molecular diagnostics in cancer

Tumor board input

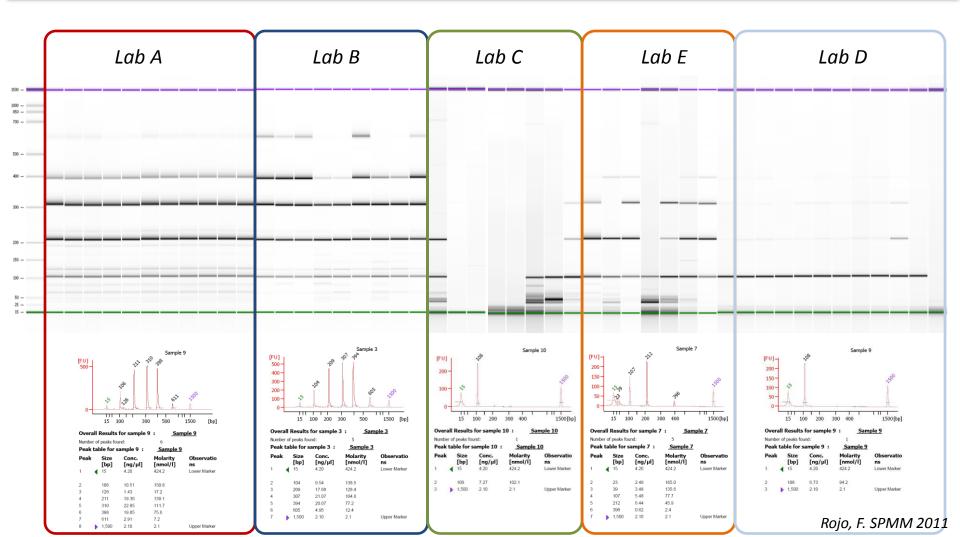




## Effects of pre-analytical variables on the detection of biomarkers in FFPE tissue

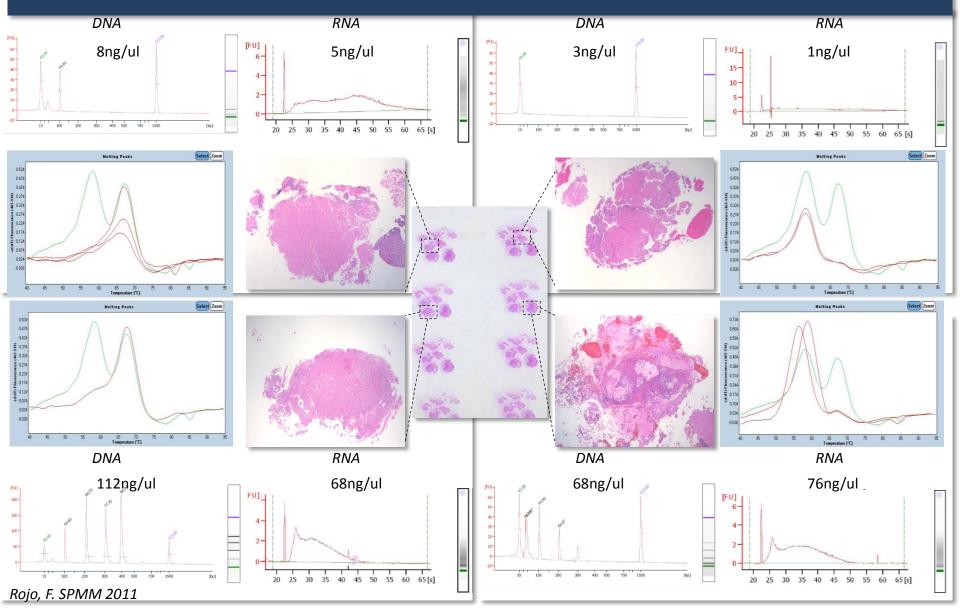
| <u> </u>                                                        | · ·                                                                                                         | ~ · ·                |                        |                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preanalytic Variable                                            | Analytic Effect                                                                                             | Antigen<br>Dependent | Conflicting<br>Reports | Source, y                                                                                                                                                                                                                                                                                                                                                                                        |
| Fixation delay (>12 h)                                          | Alterations in the extent and intensity of immunostaining                                                   | Yes                  | No                     | Start et al, <sup>s</sup> 1992<br>von Wasielewski et al, <sup>e</sup> 2002<br>Hammond et al,ª 2010                                                                                                                                                                                                                                                                                               |
| Fixative<br>Concentration<br>pH<br>Buffer                       | Alterations in the extent and intensity<br>of immunostaining, as well as<br>nonspecific background staining | Yes                  | No                     | Pollard et al, <sup>1</sup> 1987<br>Williams et al, <sup>2</sup> 1997<br>von Wasielewski et al, <sup>6</sup> 2002<br>von Wasielewski et al, <sup>11</sup> 1998<br>Atkins et al, <sup>12</sup> 2004                                                                                                                                                                                               |
| Time in fixative                                                | Alterations in the extent, distribution,<br>and intensity of immunostaining                                 | Yes                  | Yes                    | Pollard et al, <sup>1</sup> 1987<br>Williams et al, <sup>2</sup> 1997<br>von Wasielewski et al, <sup>6</sup> 2002<br>von Wasielewski et al, <sup>11</sup> 1998<br>Arber, <sup>13</sup> 2002<br>Goldstein et al, <sup>14</sup> 2003<br>Middleton et al, <sup>15</sup> 2009<br>Shi et al, <sup>12</sup> 2007<br>De Marzo et al, <sup>18</sup> 2002<br>Ibarra et al, <sup>19</sup> 2010             |
| Dehydration<br>Reagent<br>Duration<br>Temperature               | Alterations in the extent and intensity of immunostaining                                                   | No                   | Yes                    | Pollard et al, <sup>1</sup> 1987<br>Williams et al, <sup>2</sup> 1997<br>Cerio and MacDonald, <sup>29</sup> 1986                                                                                                                                                                                                                                                                                 |
| Clearing<br>Reagent<br>Temperature                              | Alterations in the extent and intensity<br>of immunostaining, as well as<br>nonspecific background staining | No                   | Yes                    | Williams et al,² 1997<br>Cerio and MacDonald,² 1986                                                                                                                                                                                                                                                                                                                                              |
| Paraffin embedding<br>Temperature<br>Duration                   | Alterations in the extent and intensity of immunostaining                                                   | No                   | Yes                    | Pollard et al, <sup>1</sup> 1987<br>Williams et al,² 1997<br>Cerio and MacDonald,²9 1986                                                                                                                                                                                                                                                                                                         |
| Section/slide adhesion<br>Temperature and<br>duration           | Alterations in the intensity of<br>immunostaining and nonspecific<br>background staining                    | No                   | Yes                    | Pollard et al, <sup>1</sup> 1987<br>Williams et al, <sup>2</sup> 1997<br>Jones et al, <sup>32</sup> 2001                                                                                                                                                                                                                                                                                         |
| Storage of slide-mounted<br>sections<br>Temperature<br>Duration | Alterations in the extent and intensity<br>of immunostaining, as well as case<br>status                     | Yes                  | Yes                    | Williams et al, <sup>2</sup> 1997<br>van den Broek and van de<br>Vijver, <sup>31</sup> 2000<br>Bromley et al, <sup>33</sup> 1994<br>Shin et al, <sup>35</sup> 1997<br>Bertheau et al, <sup>37</sup> 1998<br>DiVito et al, <sup>38</sup> 2004<br>Jacobs et al, <sup>39</sup> 1996<br>Wester et al, <sup>40</sup> 2000<br>Fergenbaum et al, <sup>41</sup> 2004<br>Grabau et al, <sup>42</sup> 1998 |

Engel, KB and Moore, HM. Arch Pathol Lab Med, 2011

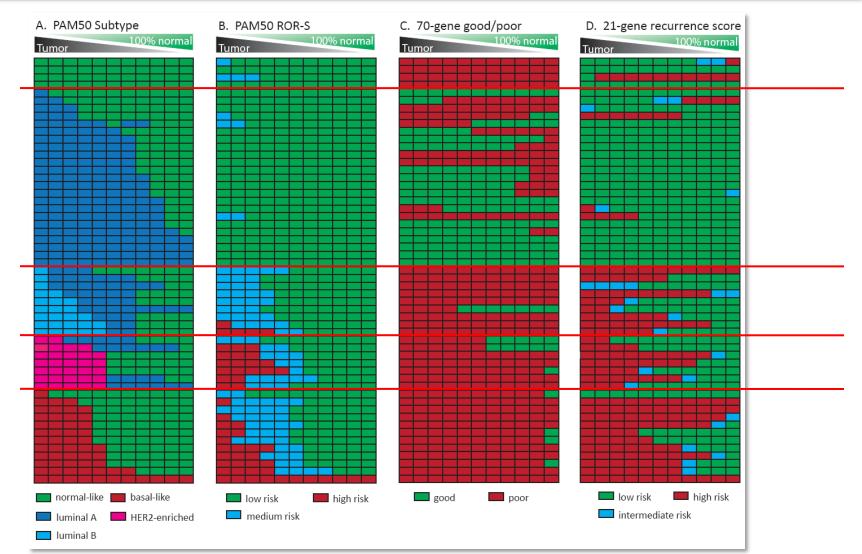
## Delay to formalin fixation (cold ischemia) modifies the status of biomarkers







Rojo, F. SPMM 2011

Overnight

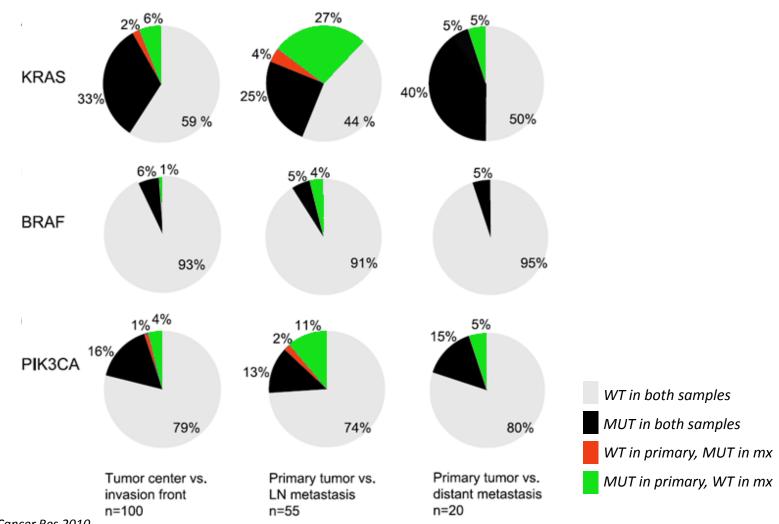

### Preservation of DNA in FFPE archieved tissue samples: Standard quality control



## Importance of selection of tissue sample for molecular diagnosis

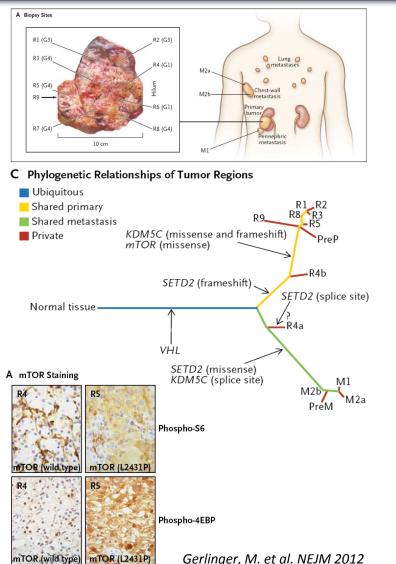


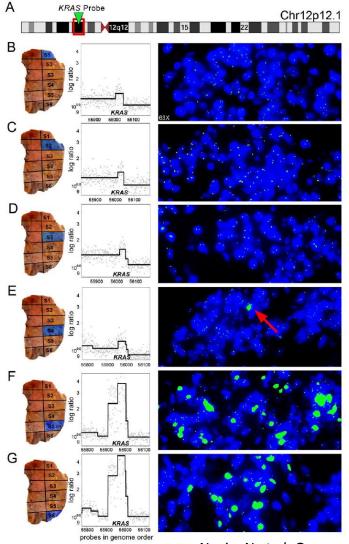
## Systematic bias in genomic classification due to non-neoplastic cell proportion in breast cancer




Elloumi, F. et al. BMC Med Genomics 2011

## Loss of HER2 expression in metastatic sites of HER2+ primary breast cancer

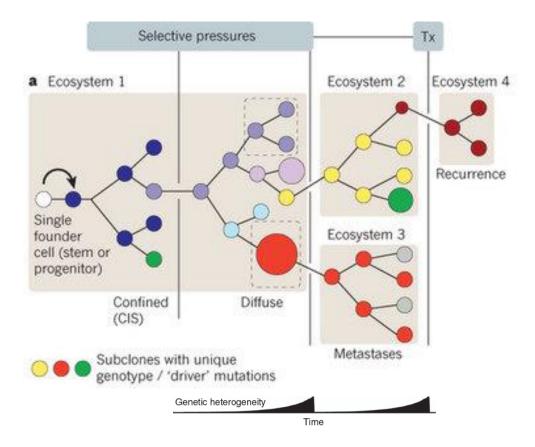

|                                     |                    | HER2-Positive | HER2-Negative |
|-------------------------------------|--------------------|---------------|---------------|
|                                     |                    | Discordance   | Discordance   |
| Previous Study                      | Location           | Rate (%)      | Rate (%)      |
| Masood et al <sup>1</sup>           | Metastatic         | 8             | 0             |
| Shimizu et al <sup>2</sup>          | Metastatic         | 0             | 0             |
| Simon et al <sup>3</sup>            | Metastatic         | 6             | 2             |
| Tanner et al <sup>4</sup>           | Metastatic         | 0             | 0             |
| Vincent-Salomon et al <sup>23</sup> | Primary            | 15            | 0             |
| Salomon et al⁵                      | Metastatic         | 18            | —             |
| Xu et al <sup>6</sup>               | Metastatic         | 0             | —             |
| Gancberg et al <sup>7</sup>         | Metastatic         | 6             | 5             |
| Taucher et al <sup>8</sup>          | Primary            | 10            | 3             |
| Burstein et al <sup>19</sup>        | Primary            | 26            | —             |
| Regitnig et al <sup>9</sup>         | Metastatic         | 0             | 15            |
| Carlsson et al <sup>10</sup>        | Metastatic         | 0             | 0             |
| Zidan et al <sup>11</sup>           | Metastatic         | 7             | 0             |
| Gong et al <sup>12</sup>            | Primary/Metastatic | 12            | 0             |
| Pectasides et al <sup>13</sup>      | Metastatic         | 38            | —             |
| Hurley et al <sup>20</sup>          | Primary            | 43            | —             |
| D'Andrea et al <sup>14</sup>        | Metastatic         | 13            | —             |
| Harris et al <sup>21</sup>          | Primary            | 11            | —             |
| Mittendorf et al <sup>22</sup>      | Primary            | 32            | —             |
| Simmons et al <sup>15</sup>         | Metastatic         | 0             | 9             |
| Lower et al <sup>16</sup>           | Metastatic         | 64            | 15            |
| Wilking et al <sup>17</sup>         | Metastatic         | 19            | 6             |
| Thompson et al <sup>18</sup>        | Metastatic         | 7             | 2             |


# Heterogeneity of KRAS, BRAF and PIK3CA mutations in colorectal cancer



Baldus, SE. et al. Clin Cancer Res 2010

### Intratumor heterogeneity: impact on biomarker detection

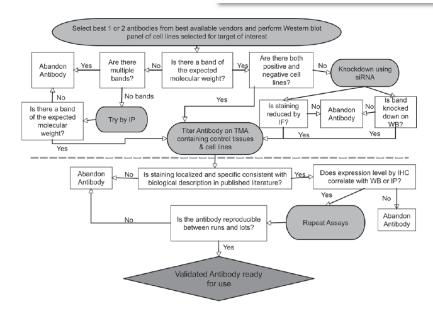





Gerlinger, M. et al. NEJM 2012

Navin, N et al. Genome Res 2010

## Intratumor heterogeneity: impact on biomarker detection



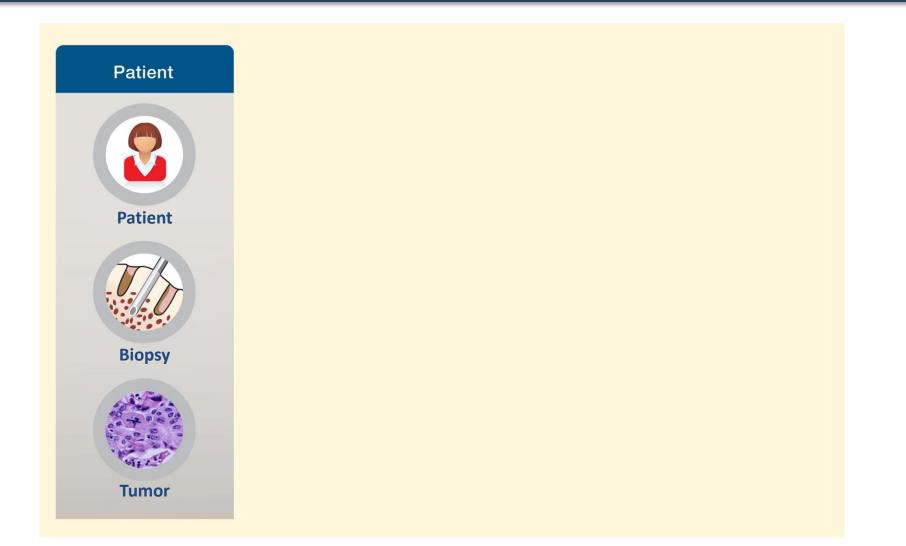

Gerlinger, M and Swanton, C. BJC 2010

#### Limitations of single-biomarker (IHC) assays in cancer

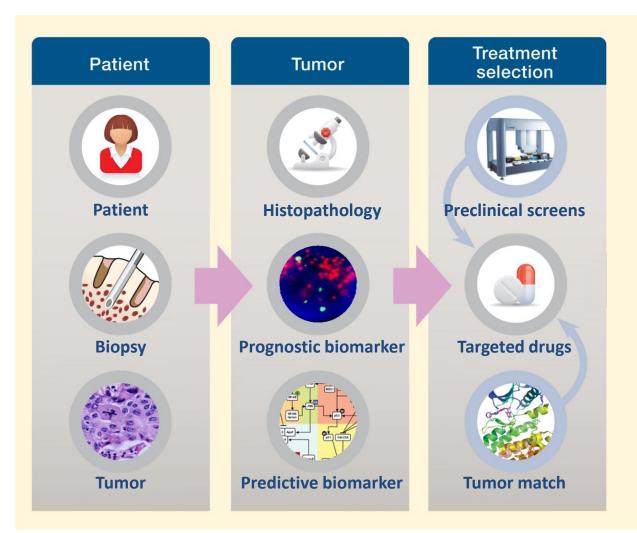
| Study                                               | No. of cases<br>retested   | Method of<br>retesting | Concordant<br>cases, n (%) | Discordant<br>cases, n (%) |                                                   |  |
|-----------------------------------------------------|----------------------------|------------------------|----------------------------|----------------------------|---------------------------------------------------|--|
|                                                     | 104                        | IHC                    | 85 (82)                    |                            | 19 (18)                                           |  |
| NSABP B-31                                          | 104                        | FISH                   | 82 (79)                    |                            | 22 (21)                                           |  |
| NCCTG 9831                                          | 119                        | IHC                    | 88 (74)                    |                            | 31 (26)                                           |  |
| Paik S, et al. J Natl Cancer Inst. 2002;94:852-854. |                            |                        |                            |                            |                                                   |  |
| Koche PC, et al. J Nati C                           | ancer Inst. 2002;94:855-8. | 57.                    |                            | of                         | roximately 20%<br>HER2 testing<br>y be inaccurate |  |






| Method                                                     | Success rates |
|------------------------------------------------------------|---------------|
| Western blot <i>only</i>                                   | 12/30 (40%)   |
| IHC only                                                   | 2/6 (33%)     |
| Western blot/IHC                                           | 1/6 (17%)     |
| Sandwich ELISA                                             | 1/30 (3%)     |
| Western blot and sandwich ELISA <1 nM sensitivity          | 5/30 (17%)    |
| Western blot and sandwich ELISA <100 pM sensitivity        | 1/30 (3%)     |
| Western blot and sandwich ELISA <10 pM sensitivity         | 0/30 (0%)     |
| Western blot and sandwich ELISA and IHC                    | 1/6 (17%)     |
| No performance in any application (i.e., complete failure) | 11/30 (37%)   |

Bordeaux, J. et al. Biotechniques 2010


# Established technologies for KRAS mutation analysis

| Method                    | Technology                                                                                   | Sensitivity,<br>MT/WT%ª | Time to Result                       | Pros                                                                                  | Cons                                                                                         |
|---------------------------|----------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                           | Teemolog,                                                                                    |                         | Thire to Result                      | 1105                                                                                  | cons                                                                                         |
| Direct sequencing         |                                                                                              |                         |                                      |                                                                                       |                                                                                              |
| Cycle sequencing          | Sanger sequencing using dye-<br>labeled dideoxynucleotide<br>chain termination               | 15–25                   | 4 d–2 wk (paraffin)                  | Gold standard<br>Detects all mutations                                                | Insensitive<br>Labor intensive                                                               |
| Pyrosequencing            | Measures pyrophosphate<br>release during DNA<br>extension                                    | 5–10                    | Fast                                 | High-throughput<br>Precise/reproducible<br>Suitable for partially<br>degraded samples | Expensive                                                                                    |
| PCR-based methods         |                                                                                              |                         |                                      |                                                                                       |                                                                                              |
| ARMS <sup>a</sup>         | Mutation-specific PCR<br>amplification                                                       | 1                       | Rapid: <2 d (paraffin)               | High sensitivity<br>Rapid results                                                     | Detects single mutation<br>per reaction<br>Requires engineered                               |
| TheraScreen*              | Combination of ARMS,<br>Scorpions <sup>b</sup> (allele-specific<br>probe), and real-time PCR | 1–5                     | Rapid: 2 d<br>2 h to process samples | Rapid results<br>High sensitivity<br>Commercially available                           | primer/probe<br>Detects only 7<br>common mutations<br>Requires more tissue<br>Very expensive |
| Allele-specific oligon    | ucleotide hybridization                                                                      |                         |                                      |                                                                                       |                                                                                              |
| Allele-specific<br>probes | Probes hybridize to wild-<br>type or mutant sequence<br>impacting melting<br>temperature     | 10                      | Rapid: <2 d (paraffin)               | Rapid results                                                                         | Low sensitivity                                                                              |
| ViennaLab <sup>b</sup>    | Hybridization of PCR<br>products to array of allele-<br>specific oligonucleotides            | 1                       | Rapid: 6 h to process<br>samples     | Detects 13 common<br>mutations<br>Less expensive than<br>TheraScreen <sup>b</sup>     | Complicated data<br>interpretation                                                           |


#### Envisioning diagnostic medicine



#### Envisioning diagnostic medicine



#### Envisioning diagnostic medicine

