

SARCOMA & GIST CONFERENCE 2016

IMMUNE THERAPY IN STS: WHERE ARE WE?

And where are going?

Robert Maki, MD PhD FACP

Mt Sinai Medical Center (New York)

Bob Maki MD at gmail.com

DISCLOSURE SLIDE

ABIM – I am a current member of the Medical Oncology Exam Committee.

To protect the integrity of Board Certification, ABIM enforces strict confidentiality and ownership of exam content. As a member of an ABIM exam committee, I agree to keep exam information confidential. As is true for any ABIM candidate who has taken an exam for Certification, I have signed the Pledge of Honesty in which I have agreed not to share ABIM exam questions with others. No exam questions will be disclosed in my presentation.

GSK

Morphotek / Eisai

Pfizer

Lilly / Imclone

Bayer

Sarcoma Alliance for Research through Collaboration (SARC)

Arcus

Gem Pharmaceuticals

Presage Biosciences

Studying immunity (like studying cancer): Layer upon layer of complexity

These layers are not just independent or dependent: they interact

Boring little lymphocytes ?

More variety than anyone initially appreciated

Two arms of the immune system

Redgrove KA Front Immunol. 2014; DOI 10.3389/fimmu.2014.00534

Qualities of stimulated lymphocytes

Dendritic cell classes

Lymph nodes

The basic immune response: Cancer as a specific example

De Haes W et al. DOI: 10.5772/51583

Components of an effective immune response against cancer

- Phagocytes / APCs
- T cells
- Tumor antigens
 - Viral
 - Differentiation antigens
 - Novel antigens
- B cells or antibodies paradoxical effects
- ...but tumors obviously grow despite all this

Cancer Immunology's Basic Concept: Immune surveillance of cancer

- If it is possible to tolerize the immune system against an antigen, cancer neoantigens must be present that elicit an effective anti-tumor immune response
- If animals and humans can reject tissue grafts, they must have mechanisms to reject cancers

Amendment to immune surveillance:

Immunoediting (add some Darwin)

Dunn GP et al. Nature Immunol 2002; 3:991 Dunn GP, Old LJ, Schreiber RD. 2004; Immunity 21: 137

Immunotherapy: what is out there?

 Mifamurtide: Muramyl tripeptide - nonspecific immunotherapy for osteogenic sarcoma

- Limiting factor: cost
- Could MTP-PE work in other sarcomas?

Modifying the equilibrium between the immune system & cancer

1. Vaccines

I know the antigen

- Specific antigens
- Whole cells
- Adjuvants (TLR agonists, viral vectors)
- 2. mAb against a specific antigen
 - Passive immunity antibody directed cell mediated cytotoxicity (ADCC)
- 3. Activated T cells against a specific antigen
 - CAR-T cells
- 4. mAb against immune effectors
 - Immune checkpoint inhibitors
- 5. Stromal effects/effectors

- IDO

I don't know the antigen, and I don't have to worry to find it

Examples

Vaccinology: NCI meta-analysis

- 440 patients
 - Melanoma (vast majority of patients)
 - Variety of antigens: MART1, gp100, NYES01,
 TRP2, HER2, etc
 - -RECIST Response rate: 2.6%

Vaccines: adjuvant + ganglioside vs. adjuvant

- Gangliosides overexpressed in sarcomas even more than melanoma
- OPT821 adjuvant ± GM2/GD2/GD3 vaccine in patients with resected lung metastatic disease from sarcomas
- n = 136
- PFS 6.4 mo on both arms

Set of vaccine targets examined for years: Cancer germ cell antigens (CGAs)

- Near universal expression of least some CGAs in synovial sarcoma
 - Examples: SSX, MAGE, BAGE, LAGE, NY-ESO-1
- Change in gene regulation of large number of X chromosome genes (most are on X)
- Antibodies against NY-ESO-1 are found in cancer patients with NY-ESO-1(+) tumors
- Vaccine strategies against NY-ESO-1 (+) tumors

NY-ESO-1 as model cancer-germ line antigen

TABLE I – NY-ESO-1 EXPRESSION IN NORMAL TISSUES: IMMUNOHISTOCHEMICAL STAINING WITH MAB ES121 IN NORMAL TISSUES

Tissue	ES121 immunoreactivity
Salivary gland	_
Pancreas	_
Liver	_
Esophagus	_
Stomach	_
Adipose tissue	_
Small bowel	_
Large bowel	_
Thyroid	_
Adrenal	_
Lung	_
Spleen	_
Lymph node	_
Kidney	_
Urinary bladder	_
Prostate Breast	
Ovary (adult) Vagina	_
Placenta	_
Cervix	_
Testis	++++ germ cells
Skin	

TABLE III - NY-ESO-1 EXPRESSION IN HUMAN CANCERS WITH NY-ESO-1 MAB ES121

Histological type	Total tested	ES121 positive
Metastatic melanoma	11	4
Breast carcinoma	14	2
Urinary bladder carcinoma	9	2
Synovial sarcoma	3	2
Carcinomas of the head and neck	10	0
Colonic carcinoma	10	0
Leiomyosarcoma	4	0
Liposarcoma	5	0
Renal cell carcinoma	10	Ö

Diagnosis/histological type (total)	RT-PCR pos/total	IHC pos/total
ACC (33)	6/33	6/33
LCC (9)	2/9	4/9
SQCC (9)	4/9	2/9
Carcinosarcoma (1)	1/1	1/1
Tota1	13/52 (25%)	13/52 (25%)

Melanoma

Cancer-germ cell antigen expression: synovial sarcoma

Immunohistochemical analysis

	NY-ESO-1	MAGE-A1	CT7
Positive tumors	80% (20/25)	16% (4/25)	8% (2/25)
Homogeneous expression	56% (14/25)	0	0

Part II of a vaccine - adjuvant

- Many adjuvants impact Toll-like receptors (TLR)
 - Toll can serves a primitive immune system function in Drosophila, e.g.
- TLR agonists trigger stimulation of the innate immune system and link innate and adaptive immunity in a concerted fashion
- Natural adjuvants include viruses through induction of IFNg and other cytokines and chemokines
 - Viral agents as immunotherapeutics (HSV melanoma)

Cellular immunotherapeutics (much more to follow)

Anti-NY-ESO-1 T cell therapy

Responding patient: single infusion

Synovial sarcoma CAR T cell protocol: NY-ESO-1 specific

- Clinicaltrials.gov # NCT01343043
- NCI, MSKCC, CHOP
- Ages 4-55
- HLA-A*02:01 patients only; tumor must be NY-ESO-1 (+) by IHC
- No prior therapy for 3 weeks
- Evaluation for T cell #: days 0-14, 21, 28, 42,
 60, months 3, 4, 5, 6, 9, 12; q6mo x 3 yrs

Immune checkpoint inhibitors

- Perhaps best evidence of immunoselection, immuno-editing
- Tumors escape recognition via negative costimulation of T cells
- Release pre-existing (but otherwise repressed) immune response for anticancer effect
 - Role of mutational burden? NSCLC, melanoma
 - Counter example: RCC
 - What about sarcomas?
- As we are learning in other diseases, can combine these agents with other agents

Pembrolizumab phase I: n=3 sarcoma pts

More at ASCO 2016...

- n=6 synovial sarcoma ipilimumab study without a responder (advanced disease)
- SARC28 pembrolizumab study; ALLIANCE nivolumab + ipilimumab accrued

Patnaik A et al. CCR 2015 Oct 7; PMID: 26446947 Maki RG et al. Sarcoma. 2013:168145. PMID: 23554566

How many co-stimulators?

Microenvironment: IDO

Indoleamine 2,3-dioxygenase

- IDO is the 1st step in tryptophan catabolism (to kynurenine)
- Depleting tryptophan is permissive for cancer growth and is immunosuppressive
 - Akin to L-asparaginase in acute lymphoblastic leukemia
- IDO induction decreases tryptophan → decreased transcription factors GLK1 and GCN2 → mTORC1 decreased
- Imatinib inhibits IDO; can it help T cells attack GIST?
- Single agent inhibitor studies underway
- IDO inhibitors can / will be combined with other therapeutics

† IDO turns off tumor immunity

CD47

- Different way to promote ADCC
- "Don't eat me" signal to APCs
 - Also found on RBCs
- Anti-CD47 present antigen to immune system more effectively?
 - Hemolysis seen in some studies
- Also eminently combinable with other immunotherapeutic approaches

Conclusions

- Plethora of options for immunotherapy studies
- Complication: Over 50 sarcoma subtypes / biologies
 - In which diagnoses is immunotherapy germane?
 - Translocation sarcomas: CAR-T vs specific antigen?
 - Aneuploid sarcomas: immune checkpoint agents?
 - ANY: TLR agonist, viral agents, IDO inhibitors, anti-CD47
 - Hard to test in any environment other than people
 - PBMC are not representative of what happens in the tumor
 - Feasible but very expensive to get repeat tissue biopsies
- Will we be talking about a mechanism this year, or looking at a few exceptional responders?

