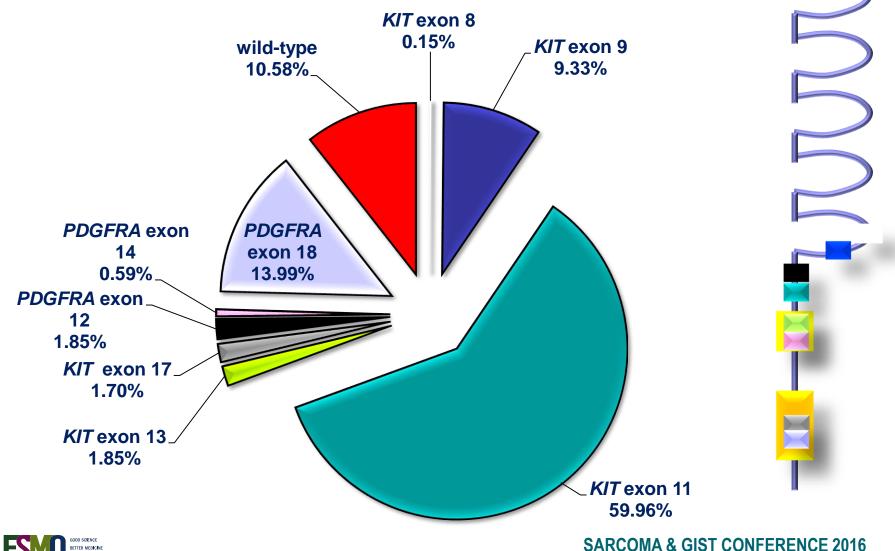


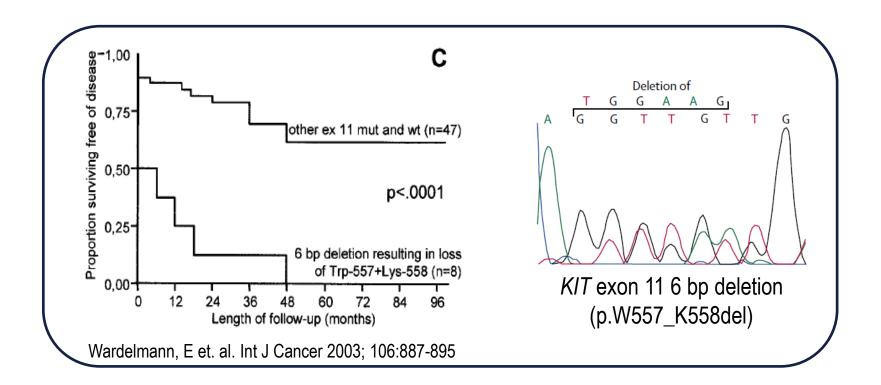
SARCOMA & GIST CONFERENCE 2016

MOLECULAR GENETICS OF GIST

EVA WARDELMANN, GERHARD-DOMAGK-INSTITUTE OF PATHOLOGY, UNIVERSITY HOSPITAL MÜNSTER

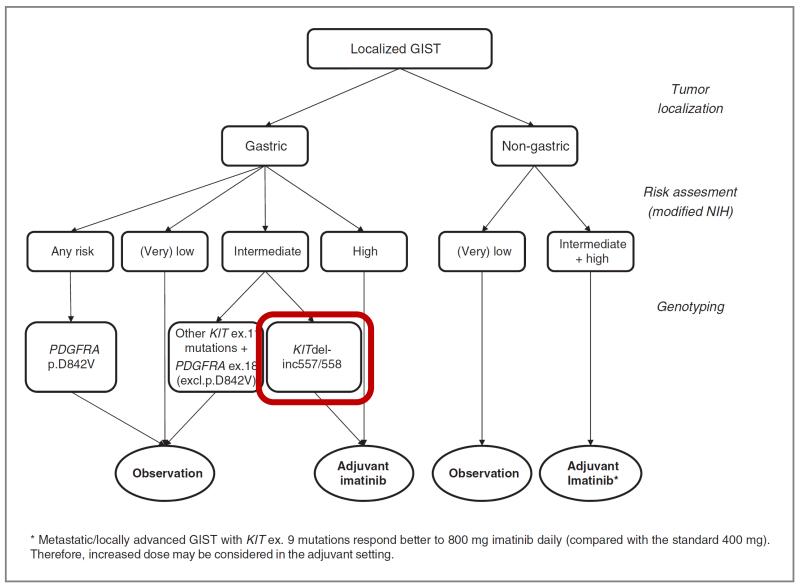

esmo.org

DISCLOSURE SLIDE


I have received honoraria and grants from Novartis, Pfizer, New Oncology, Ariad and PharmaMar

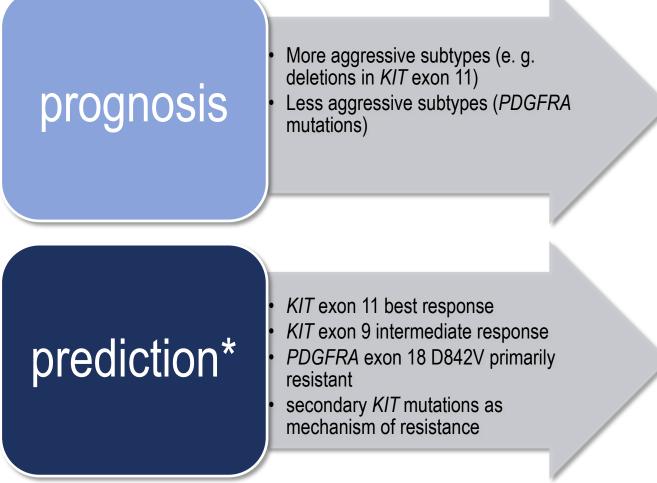
KIT and *PDGFRA* mutations occur in 85% to 90% of GIST (n=1351)

Prognostic relevance of deletions in *KIT*

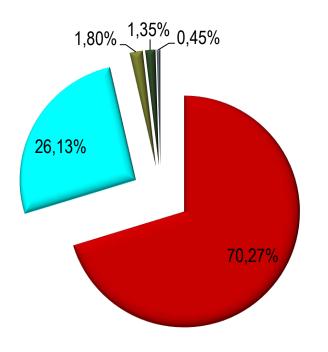


Martin J et al. J Clin Oncol 2005; 23:6190-6198 Martin-Broto et al., Ann Oncol 2010, 21:1552-1557 Wozniak A, Contica-GIST et al.; Clin Cancer Res 2014; 20:6105-6116

and others.....



Tumor Genotype Is an Independent Prognostic Factor in Primary Gastrointestinal Stromal Tumors of Gastric Origin: A European Multicenter Analysis Based on ConticaGIST


The mutational subtype is relevant for response prediction in GIST

*of response to treatment with imatinib

Frequency of resistance mutation p.D842V

15% of all GIST carry a *PDGFRA* exon 18 mutation
nearly all are located in the stomach

~70% of all gastric *PDGFRA* exon 18 mutations are D842V!

■ p.D842V (n=156)

PDGFRA exon 18 deletions (n=58)

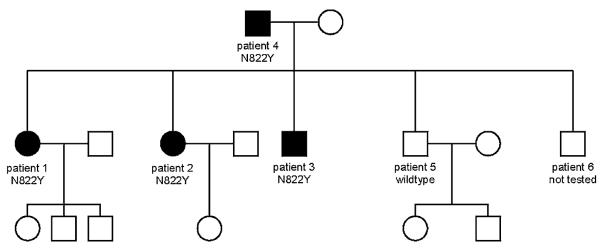
■ p.D842I (n=4)

■ p.D842Y (n=3)

■ p.Y849C (n=1)

10% of all GIST carry the resistance mutation D842V!

Lessions learned from hereditary GIST


- about 50 kindreds with germline *KIT* mutations are known world-wide
- identification of the underlying mutation may point towards novel hot spots
- identification of associated diseases can help to explain their pathogenesis
- three families have been identified so far in our German Registry

KIT Exon 17

Familial Gastrointestinal Stromal Tumors Caused by the Novel KIT Exon 17 Germline Mutation N822Y

Andreas Thalheimer, MD,* Marcus Schlemmer, MD,† Marco Bueter, MD,* Sabine Merkelbach-Bruse, PhD,‡ Hans-Ulrich Schildhaus, MD,‡ Reinhard Buettner, MD, PhD,‡ Edgar Hartung, MD,§ Arnulf Thiede, MD, PhD,* Detlef Meyer, MD, PhD,* Martin Fein, MD, PhD,* Jorn Maroske, MD, I and Eva Wardelmann, MD, PhD†

FIGURE 1. Pedigree of the kindred with a mutation in exon 17 of the *KIT* gene. Squares indicate males; circles, females; solid symbols, family members with verified gastrointestinal stromal tumor.

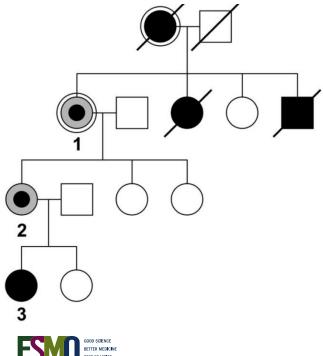
Am J Surg Pathol • Volume 32, Number 10, October 2008

KIT Exon 11

A Novel Germline *KIT* Mutation (p.L576P) in a Family Presenting With Juvenile Onset of Multiple Gastrointestinal Stromal Tumors, Skin Hyperpigmentations, and Esophageal Stenosis

Teresa M. Neuhann, MD,*† Veit Mansmann, MD,‡§ Sabine Merkelbach-Bruse, PhD, Barbara Klink, MD,* Achim Hellinger, MD,¶ Heinz-Gert Höffkes, MD,‡ Eva Wardelmann, MD, Hans-Ulrich Schildhaus, MD, and Sigrid Tinschert, MD*# Am J Surg Pathol 2013

ICC hyperplasia



KIT Exon 8

Novel Germline Mutation of *KIT* Associated With Familial Gastrointestinal Stromal Tumors and Mastocytosis

KARIN HARTMANN,* EVA WARDELMANN,[†] YONGSHENG MA,[§] SABINE MERKELBACH–BRUSE,[†] LIANE M. PREUSSNER,* CARLA WOOLERY,[§] STEPHAN E. BALDUS,^{||} THOMAS HEINICKE,[¶] JUERGEN THIELE,^{||} REINHARD BUETTNER,[†] and B. JACK LONGLEY[§]

GASTROENTEROLOGY 2005;129:1042–1046

Figure 1. Pedigree of a kindred with familial GISTs, mastocytosis, and dysphagia. Case 1 was diagnosed with GISTs, mastocytosis, and dysphagia; case 2 with GISTs and mastocytosis; and case 3 with mastocytosis only. In addition, 2 deceased siblings of case 1 had mastocytosis and the deceased mother of case 1 had mastocytosis and dysphagia. *Gray symbols*, family members with GISTs; *black symbols*, cases with additional mastocytosis or mastocytosis only; *double outer circles* (case 1 and the mother of case 1), cases with additional dysphagia; *squares*, males; *circles*, females; *symbols with a dash*, dead cases.

Germline *KIT* mutations are associated with GIST, mastocytosis, dysphagia, and hyperpigmentation, but not with germ cells tumors or AML.

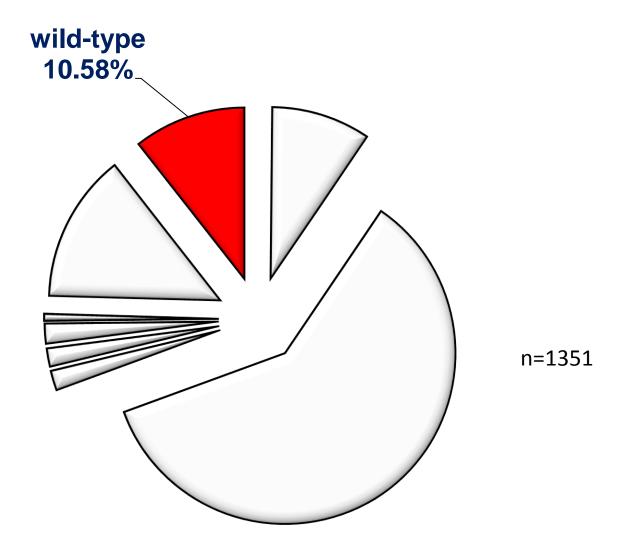
A subset of gastrointestinal stromal tumors previously regarded as wild-type tumors carries somatic activating mutations in *KIT* exon 8 (p.D419del)

Sebastian Huss¹, Helen Künstlinger¹, Eva Wardelmann¹, Michaela A Kleine¹, Elke Binot¹, Sabine Merkelbach-Bruse¹, Thomas Rüdiger², Jens Mittler³, Wolfgang Hartmann¹, Reinhard Büttner¹ and Hans-Ulrich Schildhaus¹

Table 2 Summary of two gastrointestinal stromal tumors with sporadic KIT exon 8 mutations

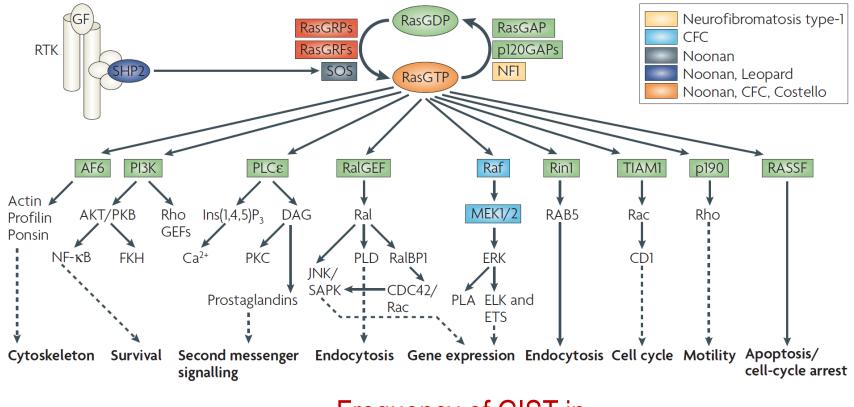
Case No.	Age/ gender	Localization	Size (cm)	Morphological subtype	Risk classification ^a (mitoses)	Mutation	Adjuvant Treatment	DFS (months)	Follow up (months)
1	53/M	Small bowel	5.4	Biphasic (epithelioid and spindled)	High (14/50 HPF)	<i>KIT</i> exon 8 c.1255_1257delGAC p.D419del heterozygous in primary tumor homozygous in metastasis	None	29	Peritoneal metastases (29) lost to follow up with progressive disease (34)
2	67/F	Small bowel	10.0	Spindled	Moderate (1/50 HPF)	<i>KIT</i> exon 8 c.1255_1257delGAC p.D419del heterozygous	Imatinib (400 mg daily)	24	No evidence of disease (24)
		ee survival; HPF the NCCN-AFIP							
	e amo	na 145 wt	CICT	(1 38%	to et al LIFE	$2014 \cdot 3$ cases	Locati	on. ema	

2 cases among 145 wt GIST (1.38% || among wt GIST, 0.15% among all)


Ito et al. IJEP 2014: 3 cases among ~ 1000 GIST (0.3%)

Location: small bowel Biology: can be aggressive

Modern Pathology (2013), 1-9



And beyond *KIT* and *PDGFRA* mutations?

Alternative molecular pathways in non *KIT*/non *PDGFRA* mutant GISTs - *NF1* mutations -

Karnoub and Weinberg, Nature reviews 2008

Frequency of GIST in NF1 patients is 7%.

Somatic NF1 loss

Somatic loss of function mutations in *neurofibromin 1* and *MYC associated factor X* genes identified by exome-wide sequencing in a wild-type GIST case

Martin G. Belinsky^{1*}, Lori Rink¹, Kathy Q. Cai², Stephen J. Capuzzi^{1,3}, Yen Hoang^{4,5}, Jeremy Chien⁵, Andrew K. Godwin⁶ and Margaret von Mehren¹

Gene symbol	UniProt accession ^a	Genomic coordinate ^b	Exon	Mutation (cDNA)	Mutation (protein)	Allele frequency	Consensus effect ^c
NF1	P21359	chr17:29665119	44	c.6781_6782insTT	p.His2240Leufs*4	100	n/a ^d
MAX	P61244	chr14:65560437	3	c.160delC	p.Gln54Lysfs*10	91	n/a ^d
RTN4	Q9NQC3	chr2:55200745	8	c.3486_3490delAGAT	p.Asp1163llefs2	36	n/a ^d
CCDC66	A2RUB6	chr3:56650054	13	c.1818_1819insCCT	p.Ser606_Lys607insPro	29	n/a ^d
MVD	P53602	chr16:88725087	2	c.112T>A	p.S38T	58	Deleterious
MAFA	Q8NHW3	chr8:144511807	1	c.770A>T	p.Q257L	56	Likely deleterious
RNF123	Q5XPI4	chr3:49751544	31	c.2947T>G	p.Y983D	52	Likely deleterious
SPIN4	Q56A73	chrX:62570610	1	c.89G>T	p.R30L	47	Likely deleterious
SELP	P16109	chr1:169565261	12	c.2003G>T	p.C668F	49	Likely deleterious

 Table 1 Confirmed somatic mutations

^ahttp://www.uniprot.org; ^bHg19; ^chttp://www.mypeg.info; ^dNot applicable

BMC Cancer 2015

KRAS mutation in a KIT and PDGFRA wild type GIST

Novel Oncogene and Tumor Suppressor Mutations in KIT and PDGFRA Wild Type Gastrointestinal Stromal Tumors Revealed by Next Generation Sequencing

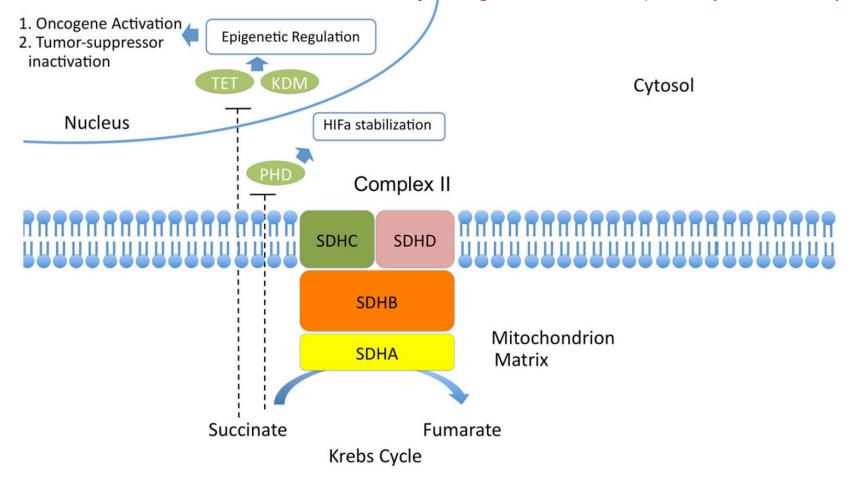
Jaclyn Frances Hechtman,¹* Ahmet Zehir,¹ Talia Mitchell,¹ Laetitia Borsu,¹ Samuel Singer,² William Tap,³ Alifya Oultache,¹ Marc Ladanyi,^{1,4} and Khedoudja Nafa¹

Case	KRAS mutation	KIT/PDGFRA mutation	Organ	Risk	KIT IHC	Response to Imatinib
Miranda et al. (2012)	GI2D	KIT ∆570-576	Stomach	High	+	Unknown
Miranda et al. (2012)	GI2A/ GI3D	KIT ∆579	Small bowel	Intermediate	+	Unknown
Miranda et al. (2012)	GI3D	PDGFRA D842V	Stomach	Low	+	Unknown
Antonescu et al. (2013)	GI2V	KIT ∆557-558	Small bowel	High	_	None
Serrano et al. (2014)	GI2R	KIT ∆554-559	Stomach	High	+	Limited to KRAS wild type nodule
Current	GI2V	None	Stomach	High	+	None

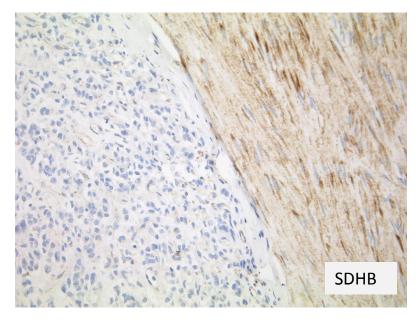
TABLE 2. Previously Reported Cases of KRAS-Mutant GISTs

Alternative molecular pathways in non *KIT*/non *PDGFRA* mutant GISTs - BRAF mutations -

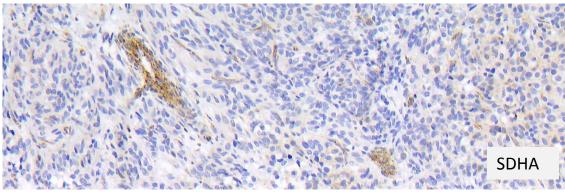
٨	garam GCC	2008	BRAF MUTATIONS IN GIST						
			Clinical and Path	ologic Findiı	ngs in BRAF mutate	ed GIST patie	nts		
	Age/Sex	Primary Tumor Size (cm)	Primary Tumor Site	MF/50 HPF	Stage at presentation	CDI17	PTEN	P16	LFU/mo
l ^a	52/F	10	SB	90	Periton Mets	Р	Р	Ν	DOD/18
2	55/F	10	SB	5	Primary	Р	NA	NA	NED/9
3	49/F	9	SB	50	Primary	Р	Р	Р	NED/13
4 ^b	66/M	20	Stomach	68	Primary	Ν	Ν	Ν	NED/32


F, female; M, male; cm, centimeters; SB, small bowel; periton mets, peritoneal metastases; MF, mitotic figures; HPF, high power fields; P, positive; N, negative; DOD, dead of disease; NED, no evidence of disease; AWD, alive with disease; NA, not available, LFU, last follow-up; mo, months. ^aGenotyping on normal tissue as well. ^bImatinib resistant GIST.

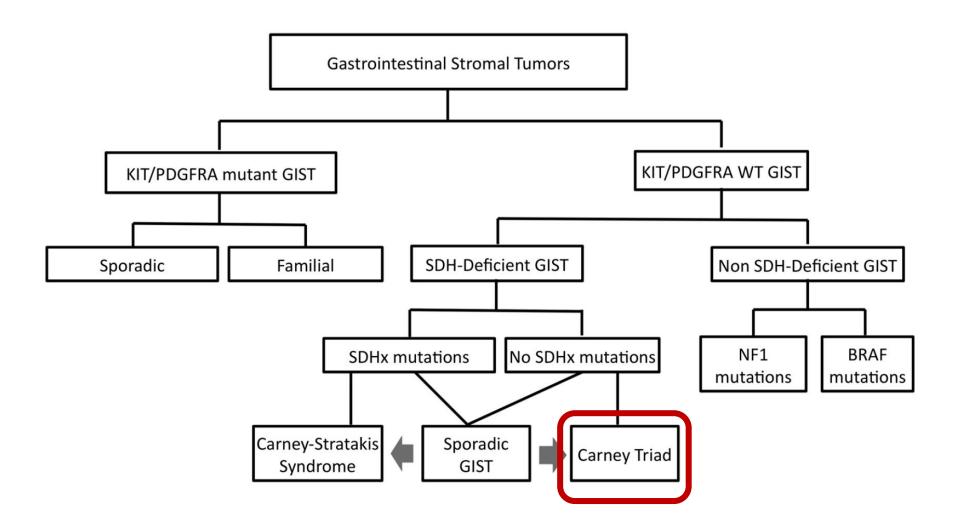
		wt	KIT-mutant	PDGFRA-mutant
BDAE	wild type	172	228	44
BRAF	mutant	7 (3.9%)	0	0
		179	228	44
Huss, S et al. (in p	reparation)			


Alternative molecular pathways in non *KIT*/non *PDGFRA* mutant GIST

- alterations in the succinate dehydrogenase complex (SDHA-D) -



SDHB negativity indicates an alteration in the SDH complex


SDHB deficiency indicates an alteration in any of the SDH complex partners (SDHA–D)

SDHA deficiency indicates SDHA alteration

Molecular classification of GIST

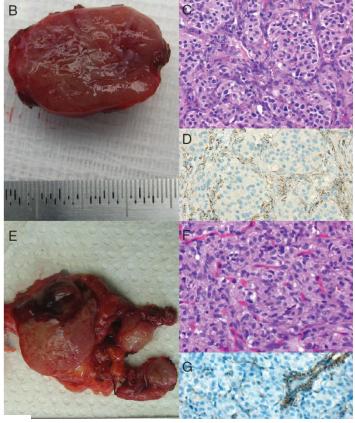
Boikos and Stratakis, Endocrine 2014

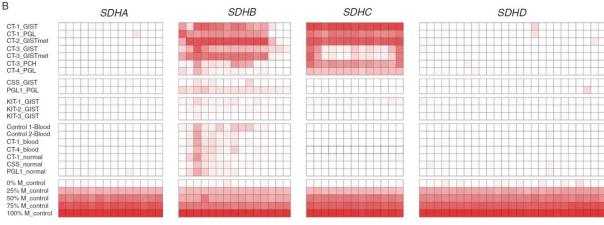
Carney's Triad: GIST + paraganglioma + pulmonary chondroma

- 85% females
- Age at onset: 7-48 (65% before 30)
- Interval between diagnosis of different tumors: up to 26 years
- no mutations in *KIT* or *PDGFRA*

Gastric sarcoma	Pulmonary chondroma	Extra-adrenal paraganglioma	No. (%) of patients
+	+	+	17 (22)
+	+	-	42 (53)
+	_	+	19 (24)
_	+	+	1 (1)

Table 2. Tumor Combinations Among 79 Patients*


*+ = present; - = absent.



Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad

Florian Haller, Evgeny A Moskalev, Fabio R Faucz¹, Sarah Barthelmeß, Stefan Wiemann², Matthias Bieg³, Guillaume Assie^{4,5}, Jerome Bertherat^{4,5}, Inga-Marie Schaefer^{6,+}, Claudia Otto⁷, Eleanor Rattenberry⁸, Eamonn R Maher^{8,9}, Philipp Ströbel⁶, Martin Werner⁷, J Aidan Carney¹⁰, Arndt Hartmann, Constantine A Stratakis¹ and Abbas Agaimy

50

Methylation

100

Endocrine-related Cancer 2014

Conclusions

Genes involved in GIST pathogenesis:

KIT exons 8, 9, 11, 13, 17 *PDGFRA* exons 12, 14, 18 *SDHA-D* (genetic alterations, epigenetic SDHC dysregulation) *KRAS, BRAF NF1*

SARCOMA & GIST CONFERENCE 2016

...other genes to be detected by NGS