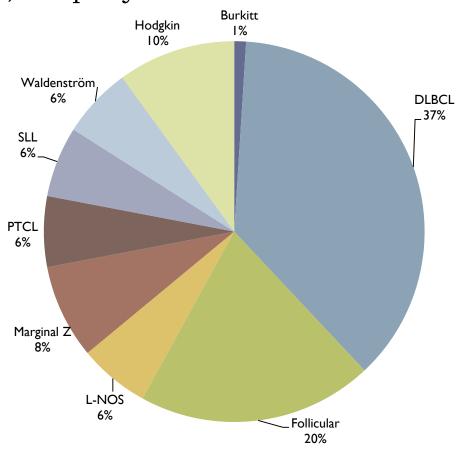


Treatment of DLBCL

Martin Hutchings Rigshospitalet, Copenhagen, Denmark EORTC Lymphoma Group

Overview of this lecture

- Classification
- Epidemiology
- Staging and prognostic stratification
- History of CHOP
- Treatment
 - Young, low risk patients without bulky disease
 - > Young, low-intermediate risk patients or low risk with bulky disease
 - Young high and high-intermediate risk patients
 - Patients aged 60-80 years
 - Patients older than 80 years
- Risk of CNS relapse and CNS prophylaxis
- Relapsed and refractory disease


Classification¹

- Diffuse large B-cell lymphoma NOS
 - Common morphologic variants
 - Centroblastic
 - Immunoblastic
 - Anaplastic
 - Rare morphologic variants
 - Molecular subgroups
 - Germinal centre B-cell-like (GCB)
 - Activated B-cell-like (ABC)
 - Immunohistochemical subgroups
 - CD5-positive DLBCL
 - Germinal centre B-cell-like (GCB)
 - Non-germinal centre B-cell-like (non-GCB)
- Diffuse large B-cell lymphoma subtypes
 - T-cell histiocyte-rich large B-cell lymphoma
 - Primary DLBCL of the CNS
 - Primary cutaneous DLBCL, leg type
 - EBV positive DLBCL of the elderly

- Other lymphomas of large B-cells
 - Primary mediastinal large B-cell lymphoma
 - Intravascular large B-cell lymphoma
 - DLBCL associated with chronic inflammation
 - Lymphomatoid granulomatosis
 - ALK-Positive LBCL
 - Plasmablastic lymphoma
 - Large B-cell lymphoma arising in HHV-8 associated multicentric Castleman disease
 - Primary effusion lymphoma
 - Borderline cases
 - B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma
 - B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Classical Hodgkin

Epidemiology

- > 30-50% af all non-Hodgkin lymphomas
- Incidence in Europe 4-8/100,000 per year¹
- Risk factors of DLBCL:
 - Family history
 - Autoimmune diseae
 - HIV or HCV seropositivity
- Incidence is increasing
- Occurs in all age groups
- Median age 65-70 years

1. Sant, et al. Blood 2010; 116: 3724-34.

2. LYFO, Danish Lymphoma Registry

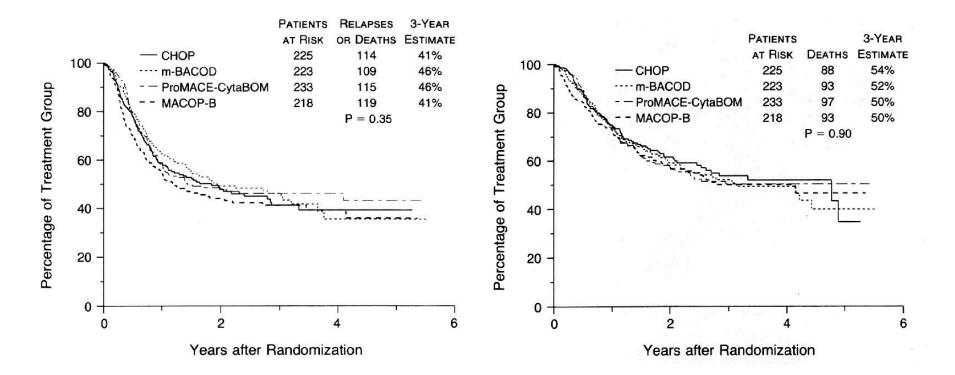
Staging and risk stratification

Lugano classification

- Ann Arbor stage I-IV
- ▶ PET/CT
- CeCT
- BMB only if
 - no PET-pos skeletal findings
 - findings would have therapeutic implications
- MRI and LP if suspected CNS involvement

Risk factors	Age >60 years				
	Serum LDH > normal				
	Stage III–IV				
	Performance status 2-4				
	Extranodal sites >1				
Risk categories	Low	0-1	91 (89–94)		
	Low intermediate	2	81 (73-86)		
	High intermediate	3	65 (58-73)		
	0				
Age-adjusted inte	High	4–5 lex	59 (49–69)		
Age-adjusted inte (aaIPI) in patie Risk factors	High ernational prognostic ind	lex	59 (49–69)		
(aaIPI) in patie	High ernational prognostic ind ents ≤60 years Serum LDH > norma Stage III–IV	lex	59 (49–69) 98 (96–100)		
(aaIPI) in patie	High ernational prognostic ind ents ≤60 years Serum LDH > norma Stage III–IV Performance status 2	lex ll -4			
(aaIPI) in patie	High ernational prognostic ind ents ≤60 years Serum LDH > norma Stage III–IV Performance status 2 Low	lex ll -4 0	98 (96–100)		

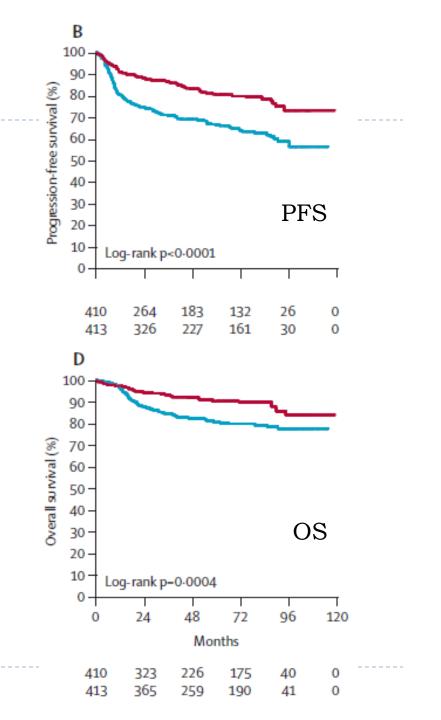
IPI, aaIPI


1. Cheson B, et al. JCO 2014, 32, 3059-68.

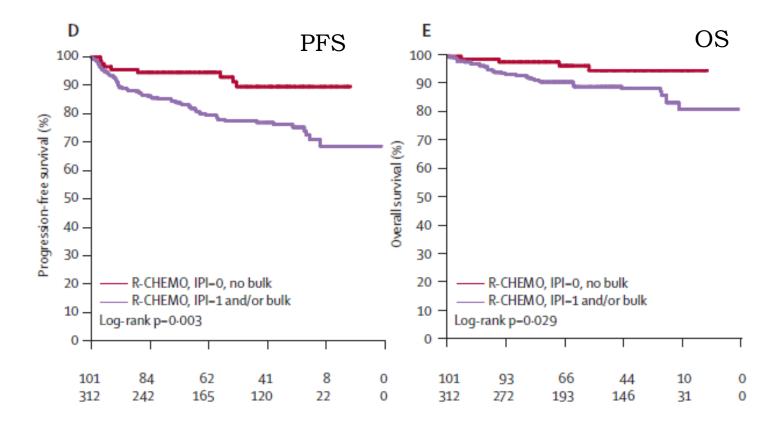
2. Shipp M, et al. NEJM 1993; 329, 987-94.

CHOP - backbone of aggressive NHL therapy

Time to treatment failure

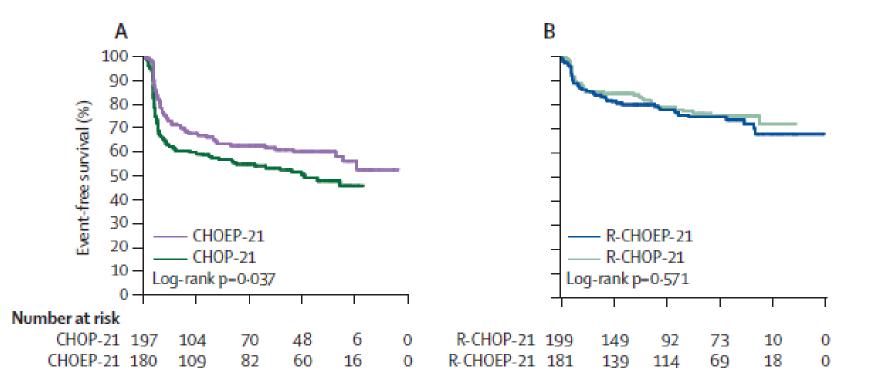

Overall survival

Young, low-risk (aaIPI = 0), no bulk


MInT trial

- ▶ 18-60 years
- aaIPI 0-1
- Stage II–IV disease or stage I disease with bulk
- 6x CHOP(-like) chemotherapy
 +/÷ Rituximab
- Radiotherapy to sites of bulky or extranodal disease
- ITT population of 813 patients
- Red: with rituximab
- Blue: without rituximab

MInT trial

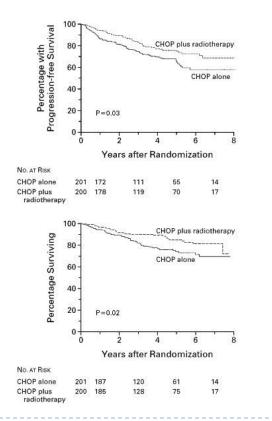

• Two distinct prognostic subgroups emerge when rituximab is added to CHOP or CHOEP

1. Pfreundschuh M, et al. Lancet Oncol 2011; 12: 1013-22.

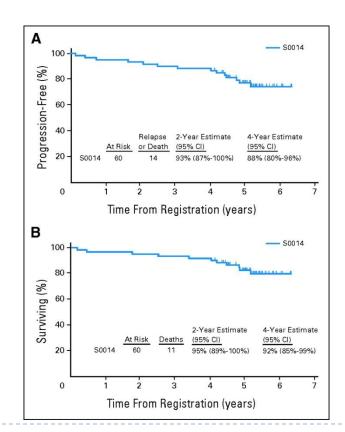
MInT trial

No difference between R-CHOP and R-CHOEP in this group

Young, low-risk (aaIPI = 0), no bulk


- Significant improvement of all outcome parameters after addition of rituximab¹
- Outcome is extremely good for patients with aaIPI = 0 and no bulk¹
- ▶ No advantage of R-CHOEP over R-CHOP¹
- No advantage of radiotherapy to initial non-bulky sites²

^{1.} Pfreundschuh M, et al. Lancet Oncol 2011; 12: 1013-22.

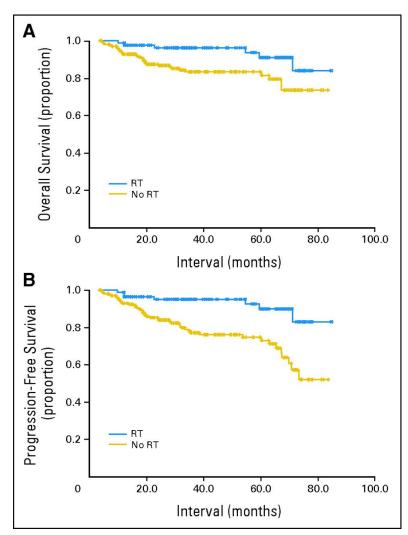

^{2.} Lamy T, et al. ASH 2014, abstract 393.

Localised DLBCL

201 Patients Receiving 8xCHOP and 200 Patients Receiving 3xCHOP plus Radiotherapy¹

60 patients enrolled in a SWOG trial of 3xR-CHOP followed by involved-field radiation therapy²

1. Miller TP, et al. N Engl J Med 1998;339:21-26.


2. Persky DO, et al. JCO 2008;26:2258-2263.

Young, low-intermediate risk patients (aaIPI = 1) or low risk (aaIPI = 0) with bulk

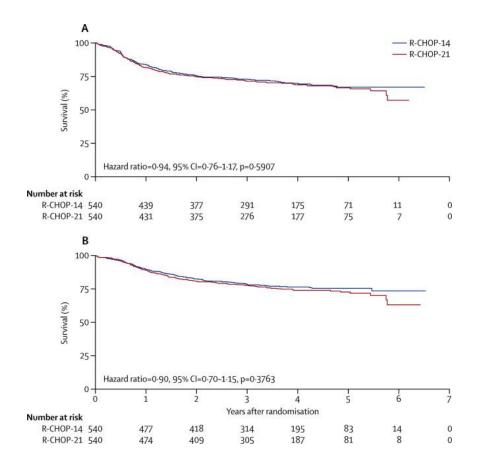
6

Young, low-intermediate risk patients (aaIPI = 1) or low risk (aaIPI = 0) with bulk

- The MInT trials showed significant improvement of all outcome parameters after addition of rituximab also in this group¹
- Still no advantage of R-CHOEP over R-CHOP¹
- Radiotherapy is recommended to bulky sites²
- R-ACVBP have shown superiority over R-CHOP in this group but no radiotherapy given in that trial

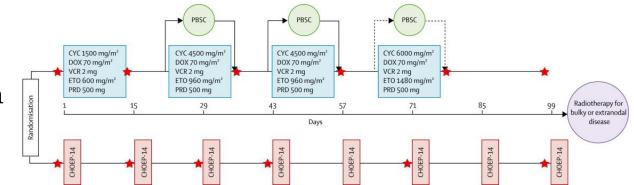
1. Pfreundschuh M, et al. Lancet Oncol 2011; 12: 1013-22.

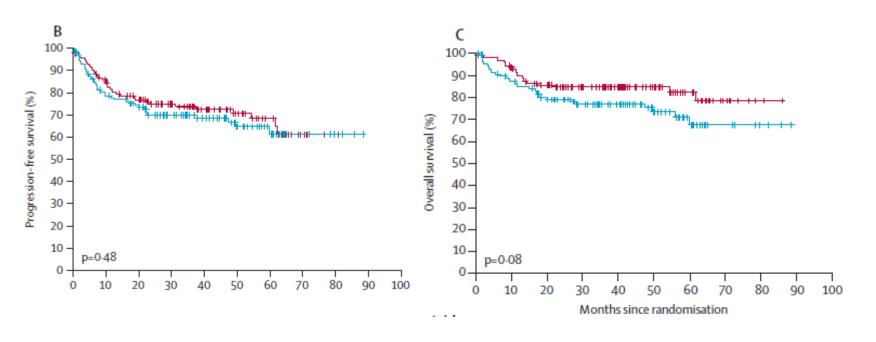
2. Phan J, JCO 2010; 28(27): 4170-6.


Young, high and high-intermediate risk patients (aaIPI ≥ 2)

No clear standard in this group

- R-CHOP14 vs. R-CHOP21?
- R-CHOEP vs. R-CHOP
- More intensive regimens?
- HDC+ASCT?


R-CHOP14 vs. R-CHOP21

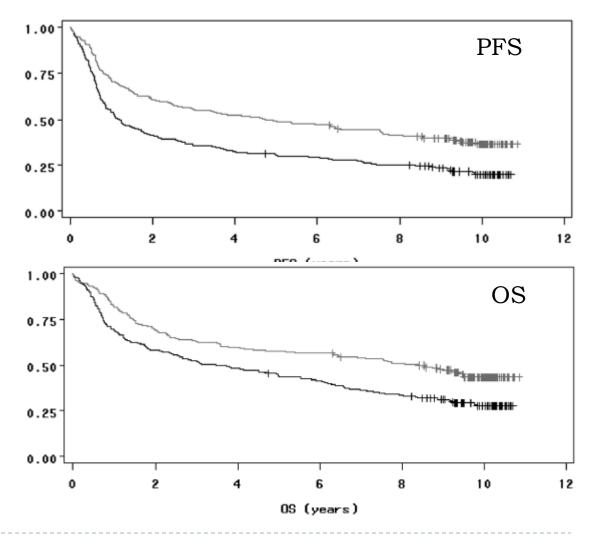

- All age groups
- Stage IA with bulk or stage IB-IV
- All IPI groups
- No advantage of R-CHOP14 over R-CHOP21 in any of the prognostic groups or age groups

R-CHOEP?

- ▶ 18-60 years
- aaIPI 2 or 3
- No difference in PFS and OS

1. Schmitz N, et al. Lancet Oncol 2012; 13: 1250-59.

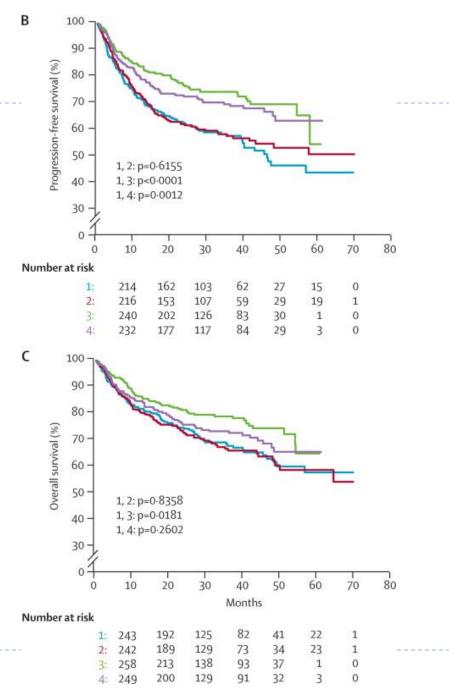
More intensive regimens?


- No direct comparisons between R-CHOEP or R-ACBVP and R-CHOP in young, high-risk patients
- Four randomised trials have compared Rchemo with or without HDC+ASCT
 - Two trials show PFS benefit but not OS benefit
 - FIL DLCL04
 - SWOG-9704
 - Two trials show no benefit at all
 - DSHNHL 2002-1
 - GOELAMS 075

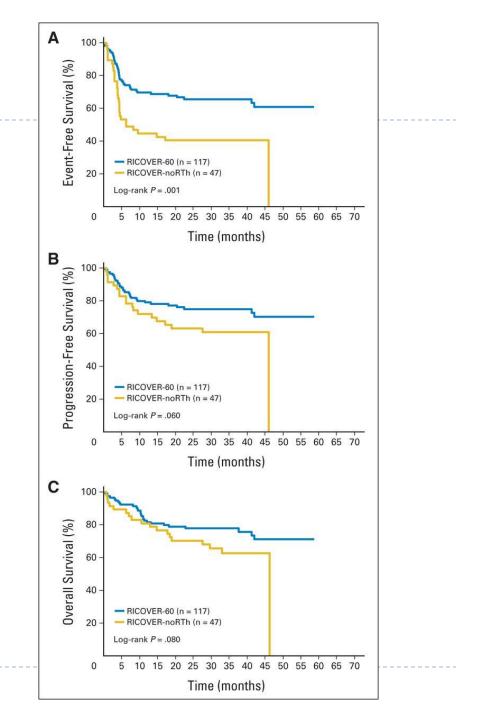
Patients aged 60-80 years

6

LNH 98.5: CHOP vs. R-CHOP

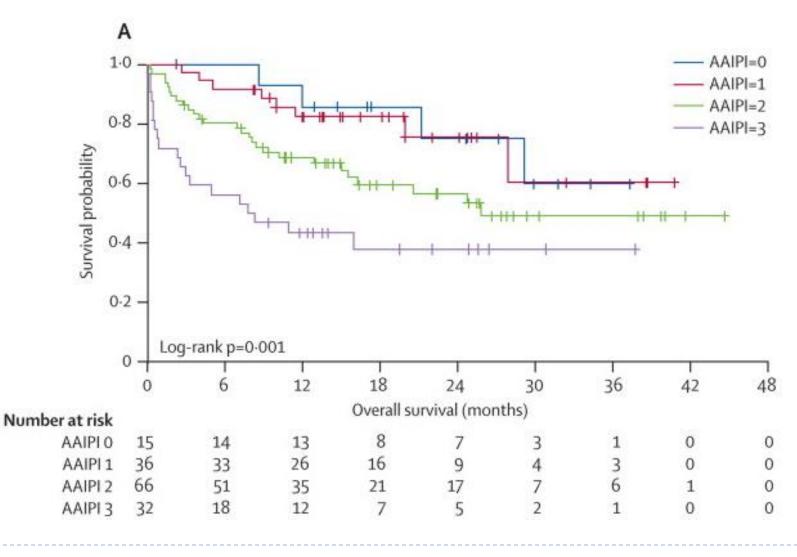

- 399 patients aged60-80
- Stage II-IV
 DLBCL
- ▶ PS 0-2

1. Coiffier B, et al. Blood 2010; 116: 2040-45.


RICOVER-60

- 1222 patients
- ▶ 61-80 years
- Randomised to
 - ▶ 6 x CHOP14 -
 - ▶ 8 x CHOP14 •
 - ▶ 6 x R-CHOP14 —
 - ▶ 8 x R-CHOP14 -

RICOVER-60: RT to bulky disease?

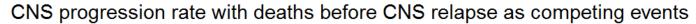

- The best arm of the RICOVER-60 trial (6×R-CHOP-14+2R plus involvedfield RT [36 Gy] to sites of initial bulky [≥ 7.5 cm] disease and extralymphatic involvement) – versus
- A cohort receiving the same immunochemotherapy but without RT in an amendment to the RICOVER-60 trial (RICOVER-noRTh) in a prospective fashion

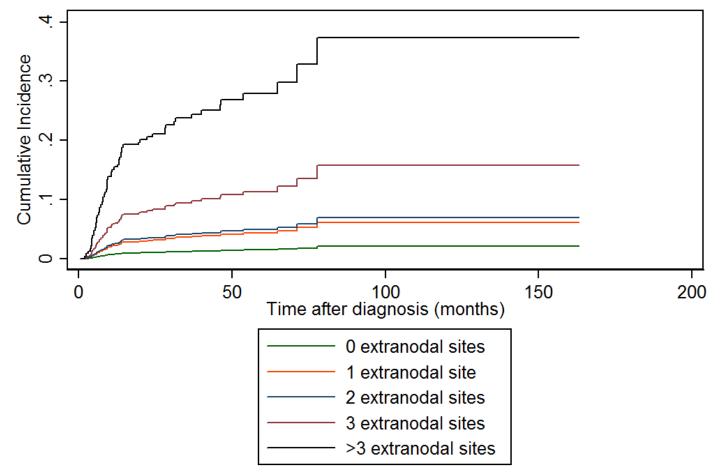
Patients over 80 years

6

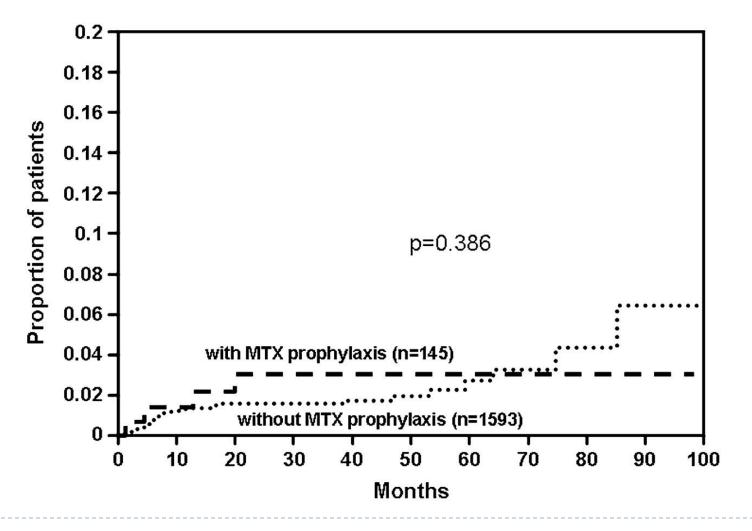
R-mini-CHOP

1. Peyrade. Lancet Oncol. 2011 May;12(5):460-8


Risk of CNS relapse / CNS prophylaxis


6

CNS disease: analysis of patients treated on DSHNHL trials


aaIPI	All patients (n = 2196)		With rituximab (n = 620)		Without rituximab (n = 1576)		
	No.	Incidence	No.	Incidence	No.	Incidence	
0	920	0,8%	166	0%	754	1,0%	
1	858	2,0%	243	0,5%	615	2,6%	
2	313	4,4%	157	4,2%	156	4,6%	
3	104	11,4%	53	9,7%	51	13,20%	

No. extranodal sites predicts CNS relapse

CNS disease: analysis of patients treated on DSHNHL trials

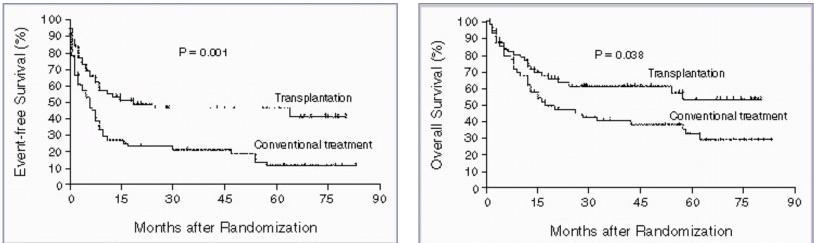
1. Schmitz N, et al. Ann Oncol. 2012 May;23(5):1267-73.

Indications for CNS prophylaxis

- ▶ IPI > 2
- ▶ PS >1 (HR) = 2.01
- Testicular (HR = 6.67)
- Kidney (HR = 20.14)
- Breast or Uterus involvement (HR = 6.14)
- CNS & Epidural lymphoma
- More than 2 extranodal sites*
- Use of IT prophylaxis does not appear to decrease CNS relapse

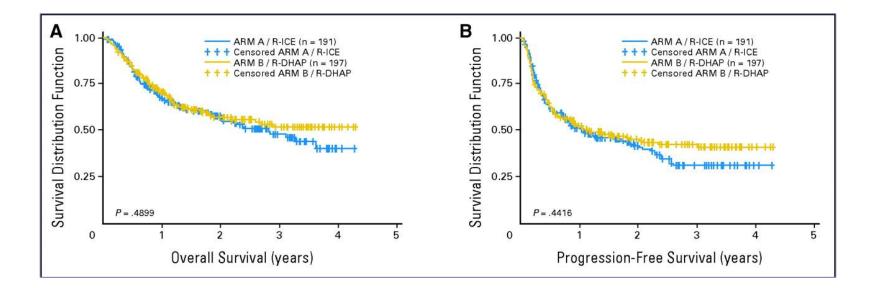
MORE MTX means LESS CNS relapses

	Group 1	Group 2	Group 3	
	$CHOP \pm R + IT \ MTX$	CHOP ± R + IT + IV HD MTX	HyperCVAD or CODOXMIVAC $\pm R$	<i>P</i> -value
Number	12	10	1	_
Localisation		· ·		•
Leptomeningeal	5	1	0	0.16
Parenchymal	4	5	0	
Both	2	0	0	
Unknown	1	4	1	
3-Year cumulative incidence of CNS	18.4%	6.9%	2.3%	0.009
relapse (95% CI)	(9.5–33.1%)	(3.5–13.4%)	(0.3–15.4%)	
3-Year overall survival	68.0%	85.9%	89.2%	0.029
	(52.4–79.3%)	(77.6–91.3%)	(73.7–95.8%)	

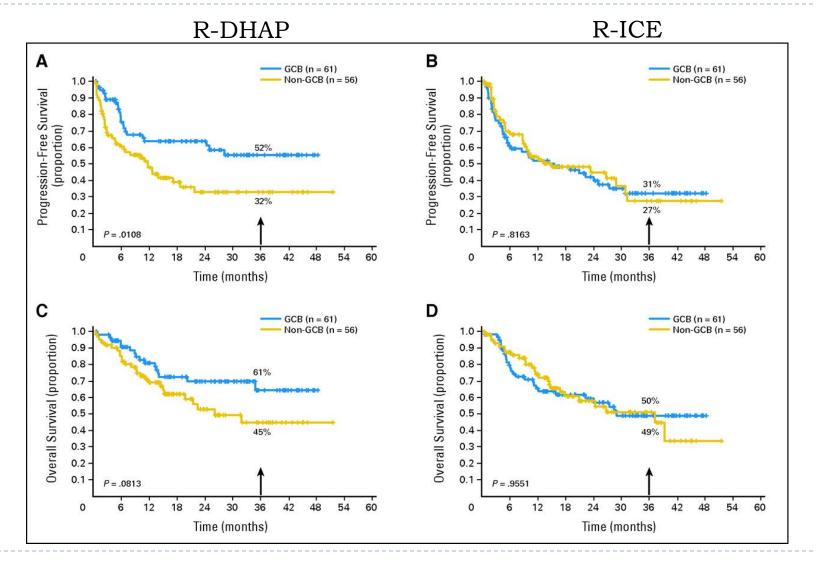

Abbreviations: CI = confidence interval; CNS = central nervous system; CODOXMIVAC = cyclophosphamide, vincristine, doxorubicin, methotrexate, ifosfamide, etoposide, cytarabine; HD = high dose; IT = intrathecal; IV = intravenous; MTX = methotrexate; R-CHOP = rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone; R-HyperCVAD = rituximab, hyper fractionated cyclophosphamide, doxorubicin, vincristine, dexamethasone; R-MTX-ara-c = rituximab, high-dose methotrexate, high-dose cytarabine. Bold denotes P < 0.05.

Relapsed and refractory DLBCL

6

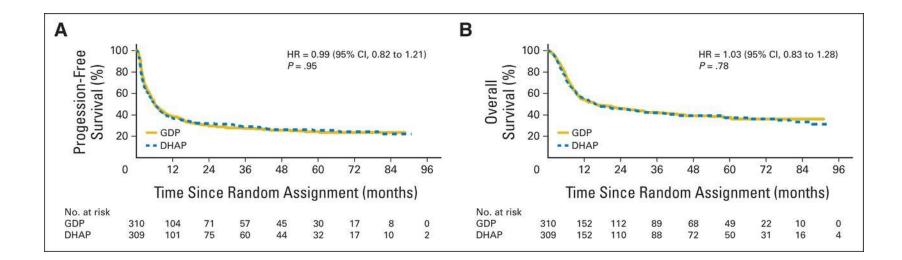

Parma trial

n=215. 2 x DHAP: response→ randomisation (n=109)



Conventional therapy: 4 x DHAP with or without RT Autologous transplant: BEAC conditioning

CORAL study



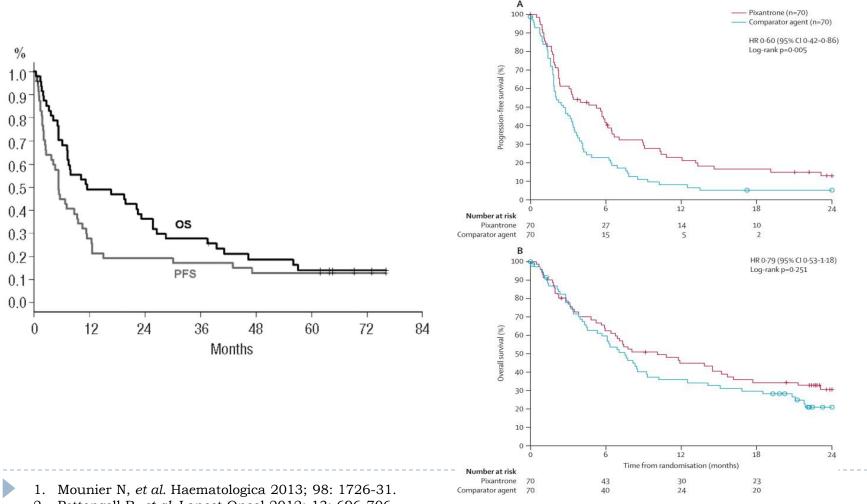
Bio-CORAL study

1. Thieblemont C et al. JCO 2011;29:4079-4087

R-DHAP VS R-GDP + BEAM

R-DHAP VS R-GDP + BEAM

	$\frac{\text{GDP}}{(n = 306)}$		DHAP (n = 304)		
Adverse Event	No.	%	No.	%	Р
Thrombosis/embolism	18	6	18	6	NS
Fatigue	30	10	28	9	NS
Nausea	13	4	25	8	.04
Vomiting	22	7	21	7	NS
Infection					
With grade 3 to 4 neutropenia	18	6	28	9	NS
Without neutropenia	21	7	22	7	NS
Febrile neutropenia	28	9	70	23	< .001
Syncope	7	2	16	5	
Worst overall	143	47	186	61	< .001


NOTE. Comparison of most frequently occurring serious adverse events, occurring in at least 5% of patients who received at least one dose of protocol therapy, at grade 3 or 4 (National Cancer Institute Common Toxicity Criteria version 2.0).

Abbreviations: DHAP, dexamethasone, cytarabine, cisplatin; GDP, gemcitabine, dexamethasone, cisplatin; NS, not significant.

Transplant-ineligible patients

▶ R-GemOx¹

▶ Pixantrone²

^{2.} Pettengell R, et al. Lancet Oncol 2012; 13: 696-706.

Further considerations

6

Open questions

- Ibrutinib may improve the efficacy of R-CHOP in 1st line treatment of ABC subtype DLBCL¹
- The poor prognosis of double-hit, particularly MYC rearrangement/overexpression, is an unsolved issue
- PET-response adapted therapy?
- DA-EPOCH?
- Bortezomib (plasmablastic variant?)
- Lenalidomide and other ImIDs
- PI3K inhibition
- Syk/JAK inhibition (Cerdulatinib)
- Antibody-drug conjugates (CD19, CD79B)
- BCL2 inhibition (ABT-199)

2015 revised ESMO DLBCL guidelines

- For young, low-risk patients (aa-IPI = 0) without bulky disease:
 - o six cycles of combination chemotherapy with CHOP treatment combined with six doses of rituximab given every 21 days is the current standard [I, A];
 o consolidation by radiotherapy to initial non-bulky sites has no proven benefit in patients treated with rituximab or not [I, A].
- For young low-intermediate-risk patients (aa-IPI = 1) or IPI low risk (aa-IPI = 0) with bulky disease:
 o either R-CHOP21 × 6 with radiotherapy to the sites of previous bulky disease or the intensified regimen R-ACVBP is recommended [II, B].
- For young high- and high-intermediate-risk patients (aa-IPI \geq 2):
- enrolment in clinical trials should be a priority;
- o six to eight cycles of chemotherapy with CHOP combined with eight doses of rituximab given every 21 days are most frequently applied [III, B];
 o dose dense treatment with R-CHOP given every 14 days has not demonstrated a survival advantage over standard R-CHOP given every 21 days [I, C];
 o intensive treatment with R-ACVBP or R-CHOEP is frequently used but these regimens have not been directly compared with R-CHOP in this category [II, B];
- o HDC with ASCT in first line remains experimental or may be proposed for selected high-risk patients [II, C];
- o the role of interim PET to select patients who could benefit from consolidative ASCT or from radiotherapy is under evaluation [I, C].
- For patients aged 60-80 years:
 - o six to eight cycles of combination chemotherapy with CHOP plus eight doses of rituximab given every 21 days is the current standard [I, A];
 - o if R-CHOP is given every 14 days, six cycles of CHOP with eight cycles of rituximab are sufficient [I, A];
 - a comprehensive geriatric assessment in order to ascertain comorbidities and functional decline is recommended to guide the choice of treatment in elderly poor-prognosis patients [III, A];
 - R-CHOP treatment can usually be used up to 80 years of age in fit patients [I, A], but modulation of treatment according to geriatric assessment is recommended [III, C].
- For patients aged >80 years:
- the combination of rituximab with attenuated chemotherapy, such as R-miniCHOP, can induce complete remission and long survival in fit patients older than 80 years [III, B];
- o substitution of doxorubicin by gencitabine, etoposide or liposomal doxorubicin, or even its omission, can be considered from the beginning or after a few cycles in patients with cardiac dysfunction or who are frail or unfit [III, C].

Thank you!

6