Immunotherapy for Ovarian Cancer

Lana E. Kandalaft, Pharm.D, Ph.D, MTR

Adjunct Assistant Professor, University of Pennsylvania Director, Center of Experimental Therapeutics, LICR, CHUV

LUDWIG INSTITUTE FOR CANCER RESEARCH

ORIGINAL ARTICLE

Intratumoral T Cells, Recurrence, and Survival in Epithelial Ovarian Cancer

Lin Zhang, M.D., Jose R. Conejo-Garcia, M.D., Ph.D., Dionyssios Katsaros, M.D., Ph.D., Phyllis A. Gimotty, Ph.D., Marco Massobrio, M.D., Giorgia Regnani, M.D., Antonis Makrigiannakis, M.D., Ph.D., Heidi Gray, M.D., Katia Schlienger, M.D., Ph.D., Michael N. Liebman, Ph.D., Stephen C. Rubin, M.D., and George Coukos, M.D., Ph.D.

Islet

CD3⁺

Stroma

TIL Present 55%

TIL Absent 40%

After CR with chemotherapy, only patients with TILs survive or are in remission long-term

Zhang, et al. N Engl J Med 2003

Meta-analysis of intraepithelial TIL impact in ovarian cancer: 10 studies; 1,815 patients

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% Cl	Year	IV, Fixed, 95% Cl
Zhang(2003)	1.65	0.18	9.8%	5.21 [3.66, 7.41]	2003	
Sato(2005)	0.67	0.26	4.7%	1.95 [1.17, 3.25]	2005	
Hamanishi(2007)	2.03	0.5	1.3%	7.61 [2.86, 20.29]	2007	→
Han(2008)	0.56	0.23	6.0%	1.75 [1.12, 2.75]	2008	 −− • −−
Tomsova(2008)	1.32	0.25	5.1%	3.74 [2.29, 6.11]	2008	
Adams(2009)	0.69	0.21	7.2%	1.99 [1.32, 3.01]	2009	
Clarke(2009)	0.28	0.09	39.1%	1.32 [1.11, 1.58]	2009	
Stumpf(2009)	0.89	0.15	14.1%	2.44 [1.81, 3.27]	2009	
Leffers(2009)	1.02	0.25	5.1%	2.77 [1.70, 4.53]	2009	
Milne(2009)	0.78	0.2	7.9%	2.18 [1.47, 3.23]	2009	
Total (95% CI)			100.0%	2.05 [1.83, 2.28]		•
Heterogeneity: $Chi^2 = 66.57$, $df = 9$ (P < 0.00001); $l^2 = 86\%$						
Left for every left effect: $7 = 12.72$ ($\mathbb{D} \ge 0.00001$)						0.05 0.2 1 5 20 CD3+ or CD8+ HIGH CD3+ or CD8+ LOW

Classification of ovarian tumors

Pre-existing immunity Can be activated

No pre-existing immunity Tumor barriers must be attenuated Immunity must be induced

Immunotherapy for ovarian cancer: recent advances and perspectives. Zsiros, E; Tanyi, J; Balint, K, Kandalaft, L Current Opinion in Oncology. 26(5):492-500, September 2014.

Rosenberg S A, Dudley M E PNAS 2004;101:14639-14645

Pre-Treatment

30+ Months

Rosenberg S A, Dudley M E PNAS 2004;101:14639-14645

<u>Trial 3</u> Extract and Expand TILs

Cellular Immunotherapy Approaches

Whole Tumor Vaccines

ADVANTAGES

- 1) Target multiple antigens at the same time
- 1) Bypass the limitations of molecularly defined Ag (eg NYESO-1 30%).

2) Patients are vaccinated against their own tumor-associated antigens

4) Meta-analysis (Neller et al 2008) (3444 patients in **173** trials were examined) Patients with Objective Response:

(8.1%): Whole tumor or tumor extracts as antigens(3.6%): Molecularly defined antigens were used

5) TCGA DATA: Average of 60 private, non-synonymous mutations per tumor (Integrated genomic analyses of ovarian carcinoma, *Nature* 2011)

Phase I Clinical Trial Of Autologous Dendritic Cell Vaccine Loaded With Autologous Tumor Cell Lysate For Recurrent Ovarian or Primary Peritoneal Cancer

Adoptive Transfer of Vaccine-Primed CD3/CD28-Costimulated Autologous T-cells Combined with Vaccine Boost

B. UPCC 10808

Lymphodepletion: intravenous cyclophosphamide (Cy, 300 mg/m²/day) and fludarabine (Flu, 30 mg/m²/day) for 3 days

Kandalaft et al, Oncolmmun. 2013

Clinical Results of UPCC-11807

1. Leukapheresis

2. Elutriation

5. Resuspension

6. Infusion

3. Wave Perfusion / Expansion

4. Bead Removal

Patients' Tumor Reactive T Cells Correlate with Clinical Outcome

Kandalaft et al, Oncolmmun. 2013

OPTIMIZING THE DENDRITIC CELL PLATFORM

OPEN ORCESS Freely available online

Day-4 Myeloid Dendritic Cells Pulsed with Whole Tumor Lysate Are Highly Immunogenic and Elicit Potent Anti-Tumor Responses

Chiang et al. Journal of Translational Medicine 2011, 9:198 http://www.translational-medicine.com/content/9/1/198

RESEARCH

Open Access

Optimizing parameters for clinical-scale production of high IL-12 secreting dendritic cells pulsed with oxidized whole tumor cell lysate

COMMENTARY

Open Access

A Phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancer

Lana E Kandalaft^{1*}, Cheryl L Chiang¹, Janos Tanyi¹, Greg Motz¹, Klara Balint¹, Rosemarie Mick² and George Coukos¹

A PILOT CLINICAL TRIAL OF DENDRITIC CELL VACCINE LOADED WITH AUTOLOGOUS TUMOR FOR RECURRENT OVARIAN, PRIMARY PERITONEAL OR FALLOPIAN TUBE CANCER

Cohort 1: OC-DC vaccine alone q 2 weeks

Cohort 2: OC-DC vaccine + Bevacizumab (10 mg/kg) q 2 weeks

Cohort 3: OC-DC vaccine + Bevacizumab (15 mg/kg) + Cyclophoshphamide (200 mg/m²) q 3 weeks

Cohort 4: OC-DC vaccine + Bevacizumab (15 mg/kg) + Cyclophoshphamide (200 mg/m²) q 3 weeks + Daily 325 mg Enteric Coated Aspirin (currently enrolling) *Kandalaft et al, JTM 2013* Rationale of combining antiangiogenesis therapy and metronomic chemotherapy on the tumor microenvironment

Kandalaft et al, JTM 2013

19809-105 A Patient who has been cured after receiving vaccine

71% OF PATIENTS HAVE A PROLONGED PROGRESSION FREE SURVIVAL ON IMMUNOTHERAPY

Kandalaft et al, In Prep

Clinical Results: Comparison with a Control Group

Kandalaft et al, In Prep

Clinical Results

Parameters	Chemotherapy + Vaccine	Chemotherapy
Progression Free Survival at 6 months	75%	45%
Time to progression	15 months	6 months
1-year survival	100%	60%
2-year survival	75%	47%

Cellular Immunotherapy Approaches

CAR Based Immunotherapy

Treatment of large, established human ovarian cancer using Folate Receptor alpha CAR gene therapy

Dan Powell, PhD, Cancer Res 2011

Engineering T cells Against aFR Tumors

Kandalaft et al J Transl Med 2012

Drug-based Immunotherapy for Ovarian cancer

Current Opinion in Oncology. 26(5):492-500, September 2014.

T cell Activation: Cytokine Therapy

Chemotherapy Resistant Ovarian Cancer Cured by IL-2

Edwards R JCO 1997; CII 2009

DC Activation and Immunogenic Cell Death

VTX-2337 (A TLR8 agonist) in combination with Doxil Abrogate Tumors in mice

(G. Coukos and A. Facciabene)

GOG-9925: VTX-2337 + PLD Preliminary Data*

VTX-2337 Dose	No. of Cycles	Best Response	
2.5 mg/m ²	2	Stable Disease	
2.5 mg/m ²	2	Stable Disease	
2.5 mg/m ²	6	Complete Response*	
3.0 mg/m ²	4	Stable Disease	
3.0 mg/m ²	6	Complete Response*	
3.0 mg/m ²	2	Progressive Disease	
3.5 mg/m ²	1	Progressive Disease	
3.5 mg/m ²	3	Stable Disease	
3.5 mg/m ²	5	Stable Disease	
3.5 mg/m ²	4	Stable Disease	
3.5 mg/m ²	2	TBD	

* presented by Monk et al. at ASCO 2013

Rx

Phase 2 Ovarian Study: VTX-2337 + PLD (GOG-3003)

Phase 2 Randomized Placebo-Controlled Trial						
Population	Study Design	Objectives				
Patients with platinum resistant	28-day dose cycle: PLD (40 mg/m ²): Day 1	Primary: Overall Survival				
ovarian cancer	VTX-2337 (3.0 mg/m ²): Day 3,	Secondary: PFS (irRECIST),				
n=300	10*, and 17*	tolerability				
	*Starting with Cycle 5, dosing with VTX-2337 is on Day 3 <u>only</u>	Other: Response rate, DCR, biomarkers (including TruCulture, Immune Score),				
	Repeat cycles until confirmed disease progression	TLR8 SNPs				
	Tumor assessment starting at week 12 and Q8 weeks thereafter					

A Phase 1/2 Study of Chemo-immunotherapy with Toll-like Receptor 8 Agonist Motolimod (VTX-2337) and anti-PD-L1 Antibody MEDI4736 in Subjects with Ovarian Cancer After Failure of Platinum-Based Chemotherapy .

Sponsor: Ludwig Institute for Cancer Research, New York, NY

PI : George Coukos

Multisite clinical trial run in The US and in Lausanne

George Coukos

- <u>Clinical Team</u>
- Janos Tanyi
- Sureya Sufian
- Vijaya Dandamudi
- Kathleen Steacker
- Jessica Marchesi
- Dina Sharhan
- Klara Balint
- Daniel Schullary
- Andrew Best
- Gabor Kari

Qunrui Ye

Laboratory Cheryl Chiang Raphael Genolet Eran Ophir

Smilow Center for Translational Research Penn Medicine

