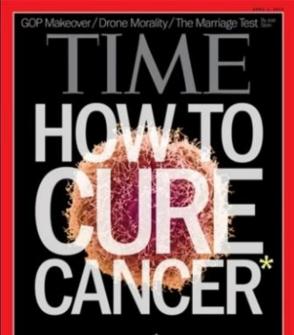
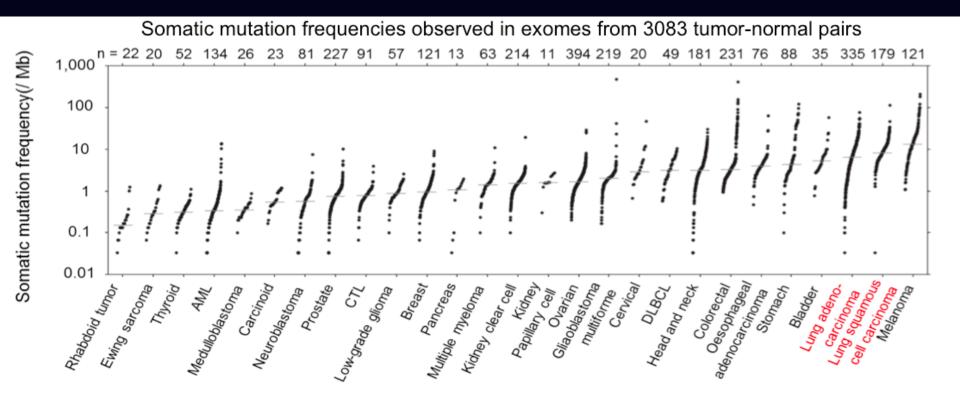


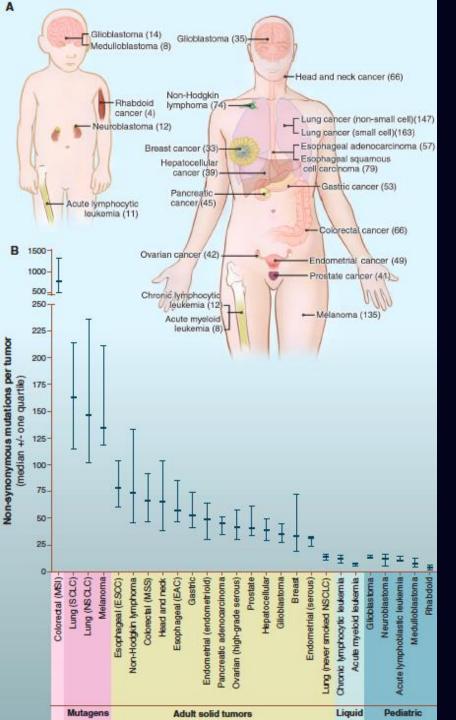
Check point inhibitors for NSCLC An update


Solange Peters, MD-PhD Oncology Department CHUV Lausanne

natureoutlook


Science Breakthrough of the Year Cancer Innunotherapy T cells on the attack

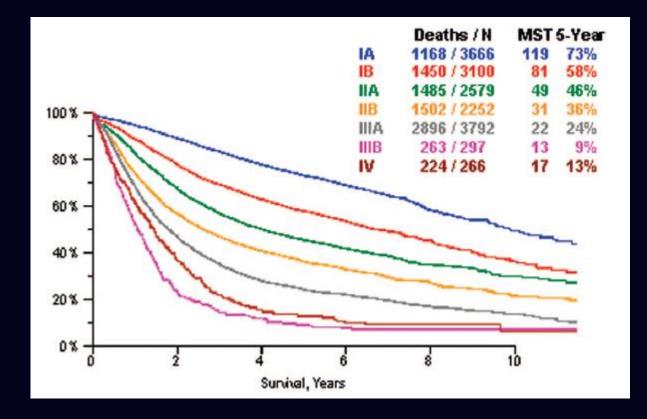
"In any trial you get the odd patient who does very well, but this is an order of magnitude above that.", Mick Peake, Glenfield Hospital


Yes, it's now possible—thanks to new cancer dream teams that are delivering better results faster wy BKA SAPORTO

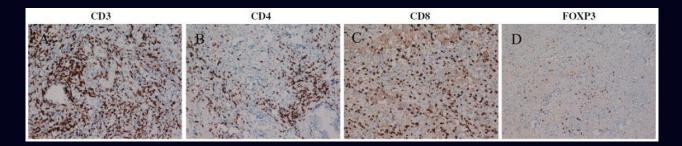
Mutations in Cancer Cells Make Them Appear Different to the Immune System

High mutational rates may contribute to increased immunogenicity

Lawrence MS, et al. Nature. 2013.

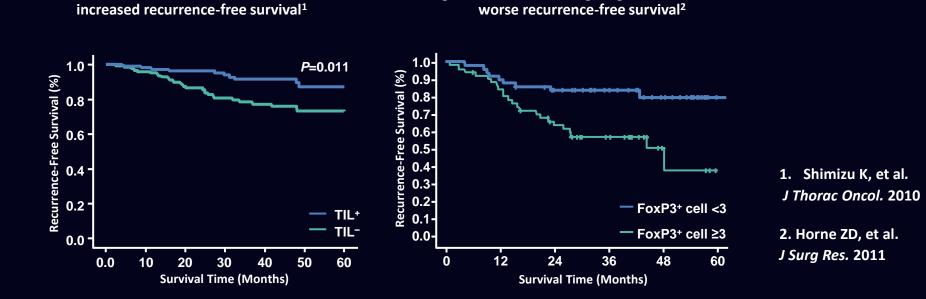


Melanomas and lung tumors display many more mutations than average, with~200 nonsynonymous mutations per tumor.

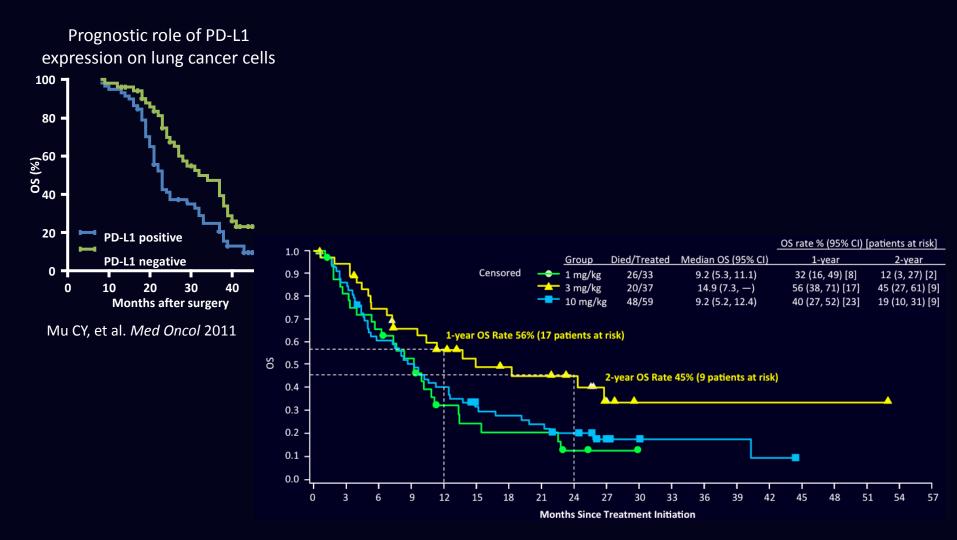

These larger numbers reflect the involvement of potent mutagens. Accordingly, lung cancers from smokers have 10 times as many somatic mutations as those from nonsmokers.

Vogelstein, Science 2013

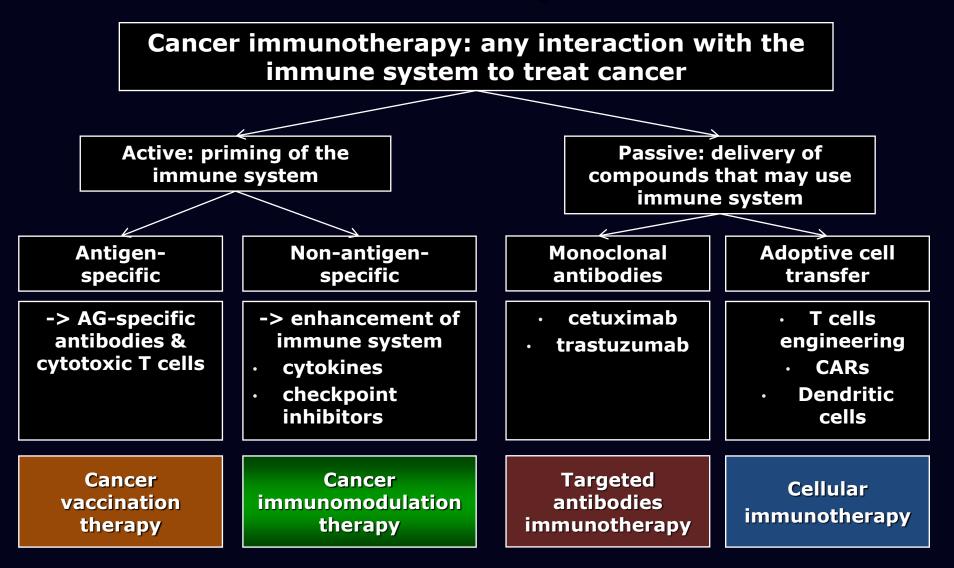
Lung cancer is the main cause of cancer death worldwide



Rationale for immune therapy in NSCLC


Liu H et al. Cancer Immunol Immunother 2012

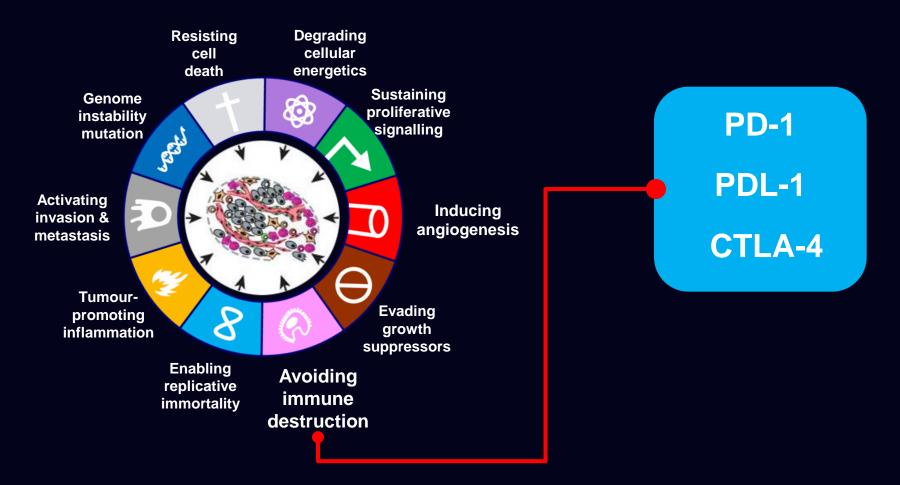
Higher NSCLC-Infiltrating Tregs associated with


Presence of TILs associated with

Rationale for immune therapy in NSCLC

Brahmer, ASCO 2014

Lung cancer immunotherapy Landscape


NSCLC: An immune driven tumor?

Tumour type	Prognostic ^a tumour infiltrating lymphocytes ^b	Immune-related spontaneous tumour regression ^c
NSCLC	Yes ¹	Yes ¹³ (rare)
CRC	Yes ²	Yes ¹⁴
Breast	Yes ^{3,4}	Νο
Melanoma	Yes ^{5,6}	Yes ¹⁵
Renal	Yes ^{7,8}	Yes ^{16,17}
Prostate	Yes ⁹	Νο
Ovarian	Yes ¹⁰	Νο
Head and neck	Yes ¹¹	Νο
Cervical	Yes ¹²	Evidence for cervical intraepithelial neoplasia 2/3 ^{18,19}

^aCovers correlation with improved overall or progression-free survival, disease stage, or therapy outcome ^bThe type of lymphocyte dictates where there is a correlation with improved or worsened outcome ^cBased on PubMed search conducted in October 2013 using the terms 'spontaneous regression' and the tumour type

1. Hiraoka K, et al. *Br J Cancer*. 2006;94:275–280; 2. Galon J, et al. *Science*. 2006;29:1960–1964; 3. Mahmoud SM, et al. *J Clin Oncol*. 2011;29:1949–1955; 4. Loi S, et al. *J Clin Oncol*. 2013;31:860–867; 5. Piras F, et al. *Cancer*. 2005;104:1246–1254; 6. Azimi F, et al. *J Clin Oncol*. 2012;30:2678–2683; 7. Siddiqui SA, et al. *Clin Cancer Res*. 2007;13:2075–2081; 8. Donskov F, et al. *Br J Cancer*. 2002;87:194–201; 9. Flammiger A, et al. *APMIS*. 2012;120:901–908; 10. Zhang L, et al. *N Engl J Med*. 2003;348:203–213; 11. Badoual C, et al. *Clin Cancer Res*. 2006;12:465–472; 12. Piersma SJ, et al. *Cancer Res*. 2007;67:354–361; 13. Nakamura Y, et al. *Lung Cancer*. 2009;65:119–122; 14. Bir AS, et al. *Anticancer Res*. 2009;29:465–468; 15. Kalialis LV, et al. *Melanoma Res*. 2009;19:275–282; 16. Kawai K, et al. *Int J Urol*. 2004;11:1130–1132; 17. Kumar T, et al. *Respir Med*. 2010;104:1543–1550; 18. Øvestad IT, et al. *Mod Pathol*. 2010;23:1231–1240; 19. Castle PE, et al. *Obstet Gynecol*. 2009;113:18–25.

Therapeutic Intervention at Cancer Hallmarks

Hanahan & Weinberg. Cell 2011

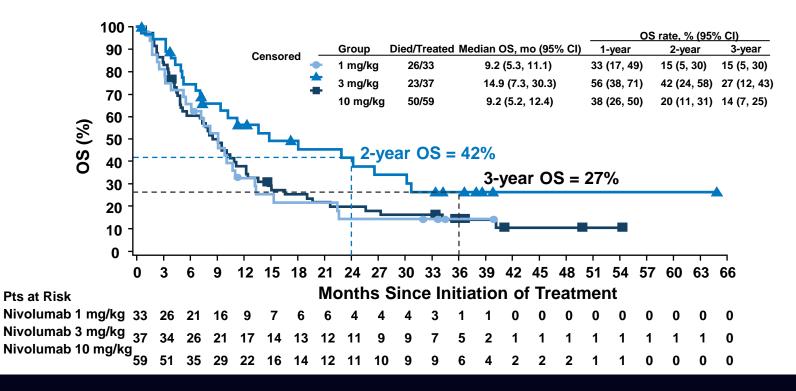
Ipilimumab NSCLC PHASE II , COMBINATION WITH CHEMOTHERAPY. D. CARBONE

Clinical Development of Inhibitors of PD-1 Immune Checkpoint

PD-1	Nivolumab- BMS-936558	Fully human IgG4 mAb	Bristol-Myers Squibb	Phase IIII multiple tumors
	Pidilizumab CT-011	Humanized IgG1 mAb	CureTech	Phase II multiple tumors
	Pembrolizumab MK-3475	Humanized IgG4 mAb	Merck	Phase III
	AMP-224	Recombinant PD-L2-Fc fusion protein	GlaxoSmithKline	Phase I
PD-L1	BMS-936559	Fully human IgG4 mAb	Bristol-Myers Squibb	Phase I
	MedI-4736	Engineered human IgG1 mAb	MedImmune	Phase II (III)
	MPDL-3280A	Engineered human lgG1 mAb	Genentech	Phase III
	MSB0010718C	Engineered human IgG1 mAb	EMD Serono	Phase II

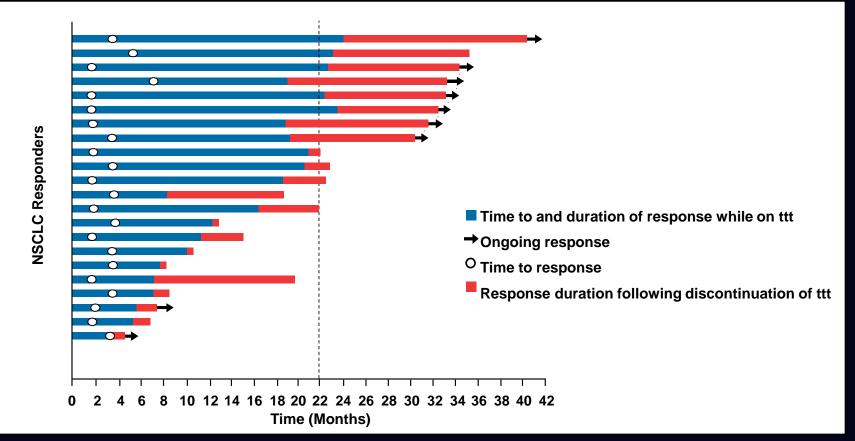
Anti-PD1/Anti PDL1: What do we know at the end of 2014?

- 1) Monotherapy treatment with various drugs accross histologies and molecular subtypes
 - 1) in <a>>2 line of NSCLC treatment
 - 2) In first line NSCLC treatment
- 2) The challenge of the biomarker

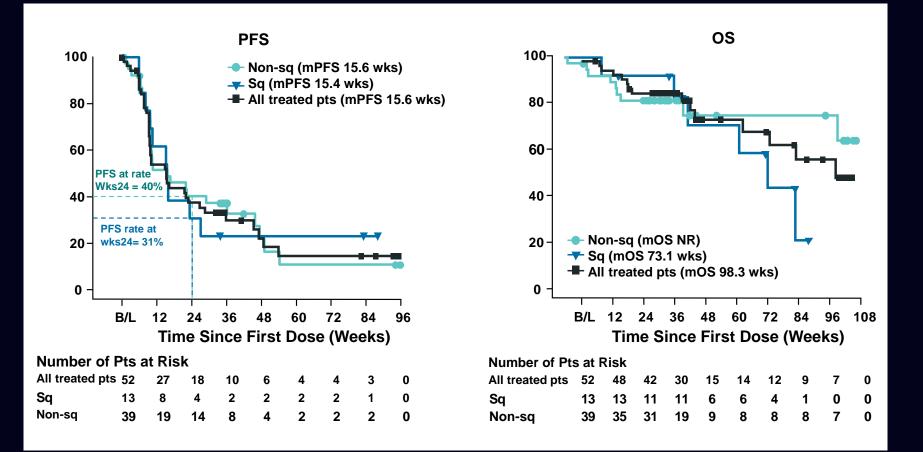

Long-Term Survival, Clinical Activity and Safety of Nivolumab (Anti-PD-1; BMS-936558, ONO-4538) in Patients (pts) With Advanced Non-Small Cell Lung Cancer (NSCLC)

Gettinger et al, ASCO 2014 and CMSTO 2014

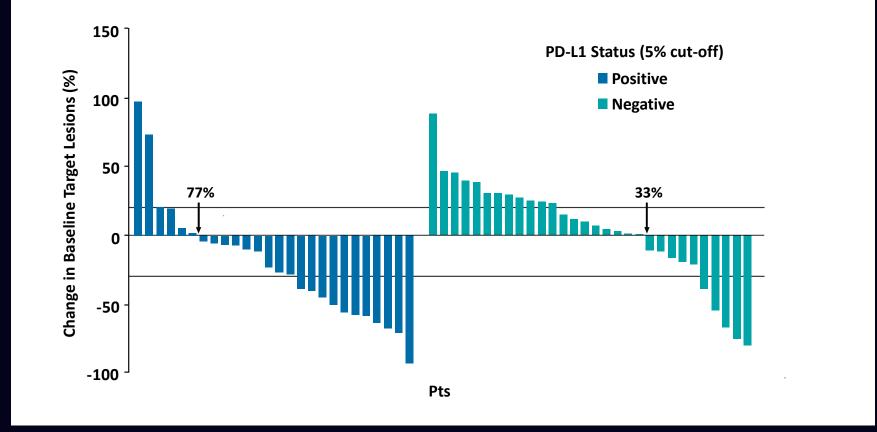
Nivolumab >2 ND LINE, PHASE 1 DATA


Gettinger et al, ASCO 2014 and CMSTO 2014

OS by Dose (data lock 09-2014)


- Pts were heavily pretreated; 54% had 3–5 prior therapies
- 50% of responders (11/22) demonstrated response at first assessment (8 wks)
- Responses were ongoing in 41% of pts (9/22) at the time of analysis

Characteristics of Responses

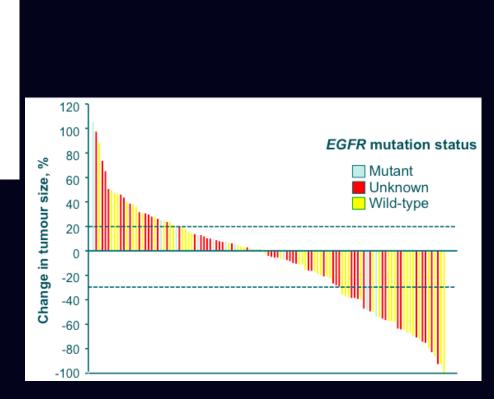


- 5% unconvientional "immune-related" responses, with persistent reduction in target lesions in the presence of new lesions or regression following initial progression
- Manageable safety profile with no new safety signals emerging with all pts having >1 year of follow-up

PFS and OS in NSCLC Pts Treated With Nivolumab Monotherapy

Best Change in Target Lesion Tumor Burden by Tumor PD-L1 Expression

There was no clear association between PD-L1 expression and RR, PFS or OS (archival samples)

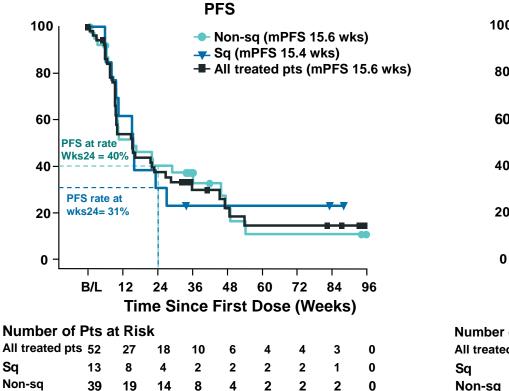

Exploratory Analysis of Response by Smoking Exposure

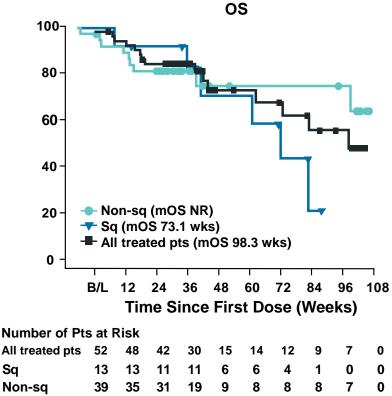
Variable	ORR, % (n/N) [95% CI] ^a			
Smoking exposure				
>5 pack-years	<mark>30</mark> (20/66) [20, 43]			
≤5 pack-years ^b	<mark>0</mark> (0/14) [0, 23]			
Time since quitting (NO CORRELATION)				
>15 yrs prior	26 (6/23) [10, 48]			
6–15 yrs prior	17 (2/12) [2, 48]			
1–5 yrs prior	46 (6/13) [19 <i>,</i> 75]			
Current smoker	27 (6/22) [11, 50]			
0/never smoker	0 (0/10) [0, 31]			

Nivolumab in EGFR M+

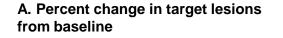
CA209-003: phase 1 follow-up study, up to 5 prior lines of therapy, NSCLC cohort

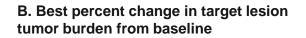
Subgroup	ORR, % (n/N) [95% CI]	
EGFR status		
Mutant	17 (2/12) [2.1–48.4]	
Wild-type	20 (11/56) [10.2-32.4]	
Unknown	15 (9/61) [7.0-26.2]	

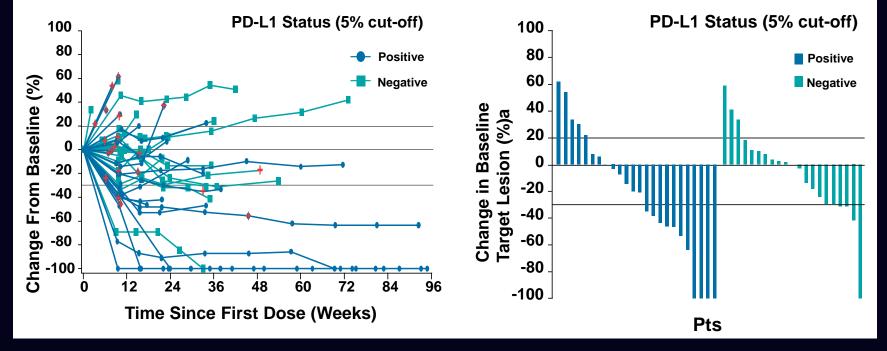

Nivolumab 1ST LINE, PHASE 1 DATA MONOTHERAPY


Rizvi et al; Antonia et al, CMSTO 2014

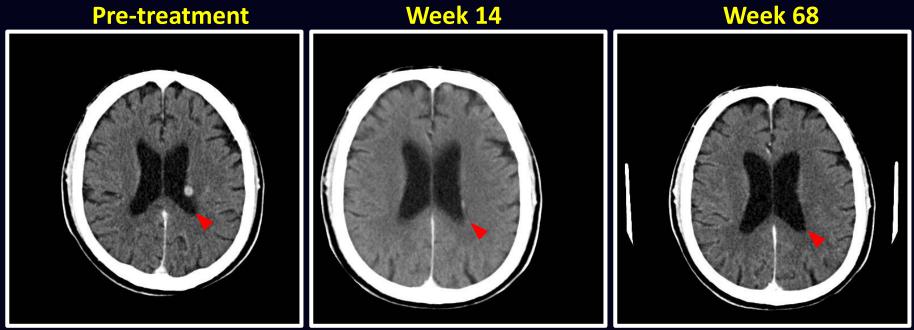
Nivolumab 1ST LINE, PHASE 1 DATA MONOTHERAPY COMBINATIONS **IPILIMUMAB AND NIVOLUMAB** NIVOLUMAB AND ERLOTINIB (EGFR M+) **NIVOLUMAB AND CHEMOTHERAPY D.CARBONE**


Rizvi et al; Antonia et al, CMSTO 2014

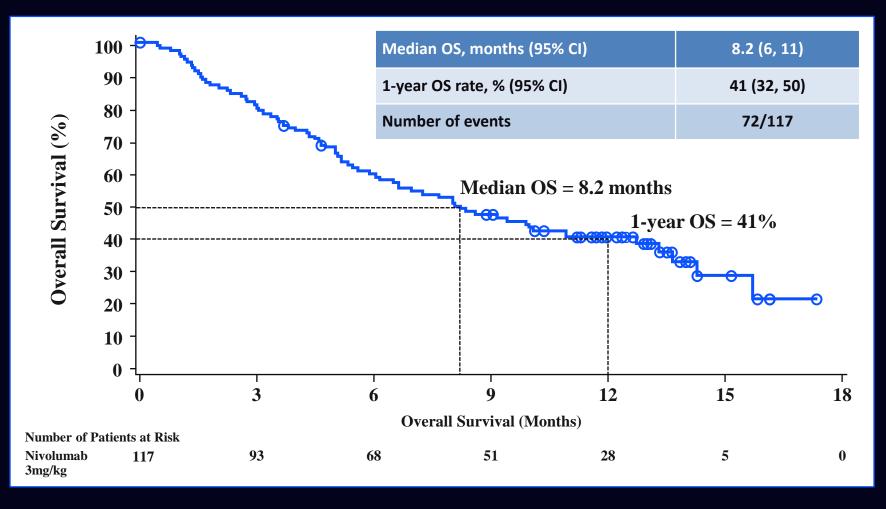

PFS and OS in NSCLC Pts Treated With Nivolumab Monotherapy frontline



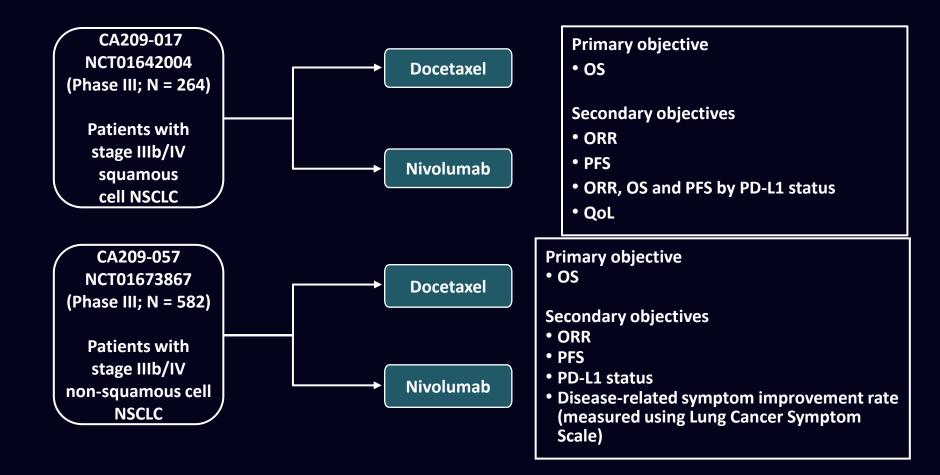
Percent Changes in Target Lesion Tumor Burden by PD-L1 in first line



SQUAMOUS >2 ND LINE, PHASE 2 MONOTHERAPY DATA


Nivolumab

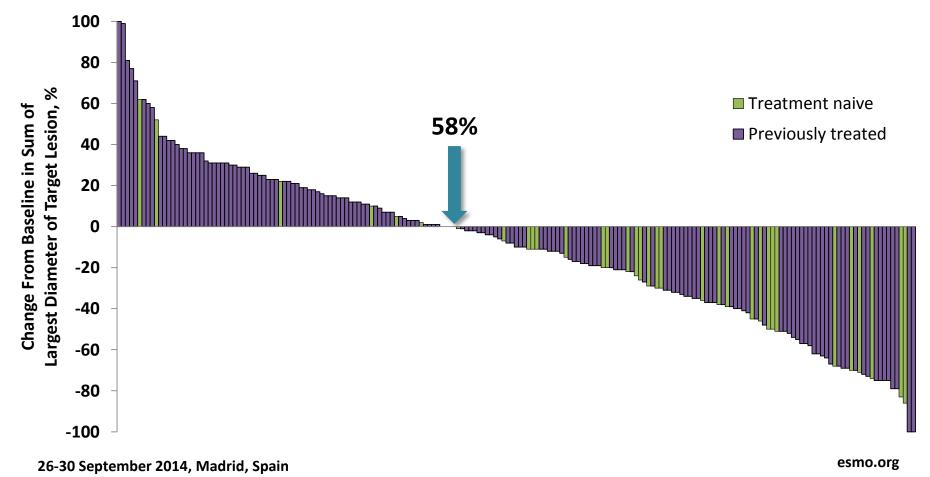
Response to Nivolumab in SQ NSCLC Brain Metastasis


- 73 year-old male, stage IIIB, former smoker
- Prior radiotherapy (mediastinal), 3 prior systemic regimens (cisplatin/gemcitabine, docetaxel, vinorelbine)
- No prior CNS-directed radiotherapy

Overall Survival : All Treated Patients

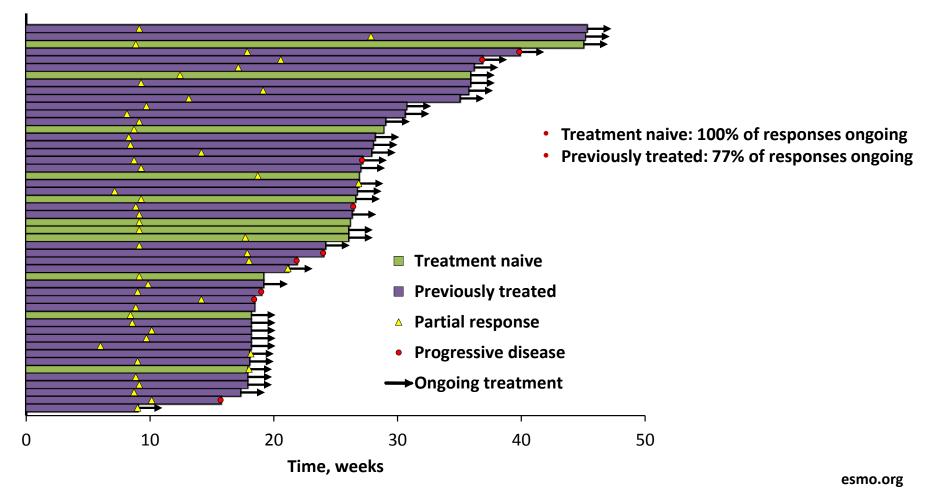
Median follow-up for survival: 8 months (range, 0–17 months)

Randomized confirmation pending...



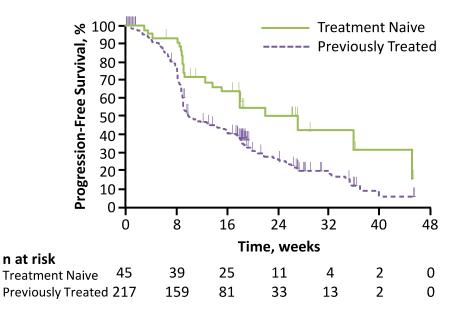
NSCLC POOLED ANALYSIS 1ST AND SUSEQUENT LINES, MONOTHERAPY

Pembrozilumab

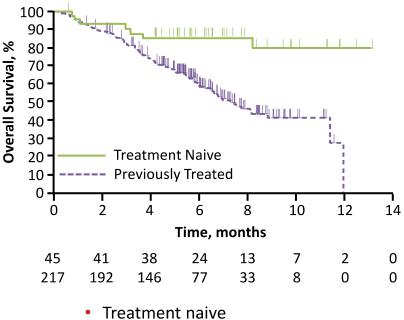


Maximum Percent Change From Baseline in Tumor Size^a (RECIST v1.1, Central Review)

Time to and Durability of Response (RECIST v1.1, Central Review)^a

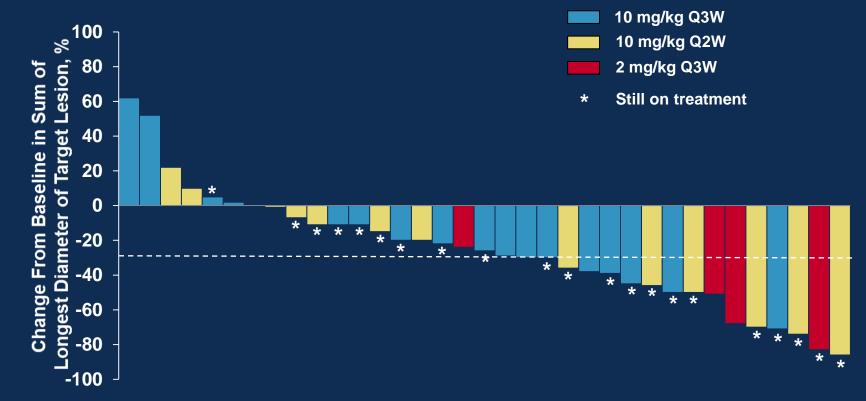


^aIncludes confirmed and unconfirmed responses. Analysis cutoff date: March 3, 2014.


Kaplan-Meier Estimates of Survival

PFS (RECIST v1.1, Central Review)

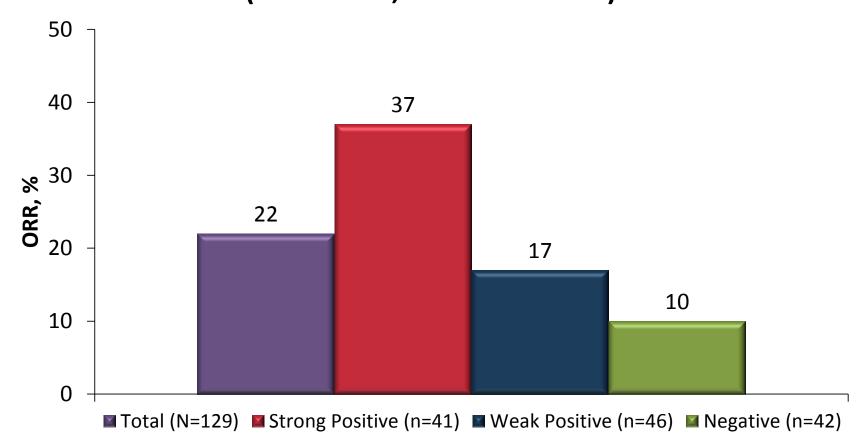
- Treatment naive
 - Median PFS: 27 weeks (95% Cl, 14-45)
 - 24-week PFS: 51%
- Previously treated
 - Median PFS: 10 weeks (9.1-15.3)
 - 24-week PFS: 26%


26-30 September 2014, Madrid, Spain

OS

- Median OS: NR (95% CI, NE-NE)
- 6-month OS: 86%
- Previously treated
 - Median OS: 8.2 months (7.3-NR)
 - 6-month OS: 59%

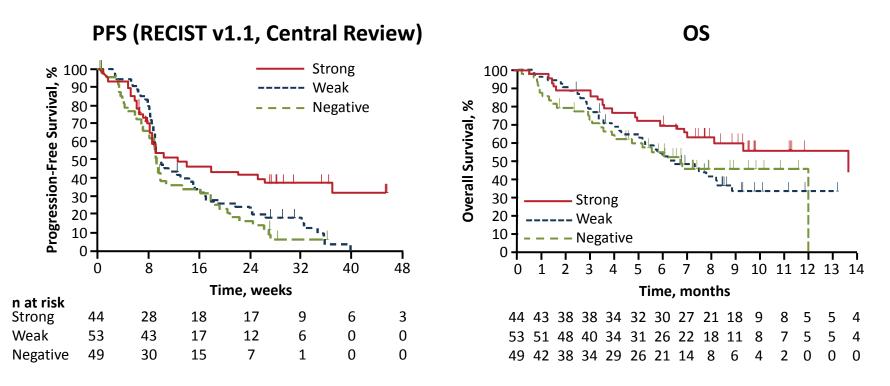
Focus on pembrozilumab first line data


- Interim median PFS^c:
 - 27.0 weeks (95% CI, 13.6-45.0) by RECIST v1.1 per central review
 - 37.0 weeks (95% CI, 27.0-NR) by irRC per investigator review

ASCO 50° ANNUAL SCIENCE & SOCIETY

PRESENTED AT:

Response Rate by Level of PD-L1 Expression (RECIST 1.1, Central Review)


26-30 September 2014, Madrid, Spain

esmo.org

^aEvaluable patients were those patients in the training set with evaluable tumor PD-L1 expression who had measurable disease at baseline per imaging assessment criteria. Analysis cut-off date: March 3, 2014.

Kaplan-Meier Estimates of Survival

- PFS was longer in patients with PD-L1 strong-positive versus PD-L1 weak-positive/ negative tumors (HR, 0.52; 95% CI, 0.33-0.80)
- OS was longer in patients with PD-L1 strong-positive versus PD-L1 weak-positive/ negative tumors (HR, 0.59; 95% CI, 0.35-0.99)

^aEvaluable patients were those patients in the training set with evaluable tumor PD-L1 expression.

Strong PD-③ 口 》 《 一 》 《 一 》 《 一 》 》 《 一 》 《 Data cut-off: March 3, 2014.

Soria et al , WCLC 2013 and Brahmer et al, 2014

MPLD3280A <u>>2 ND LINE, PHASE 1 DATA</u>

MPDL3280A Phase Ia: Efficacy Summary Investigator Assessed

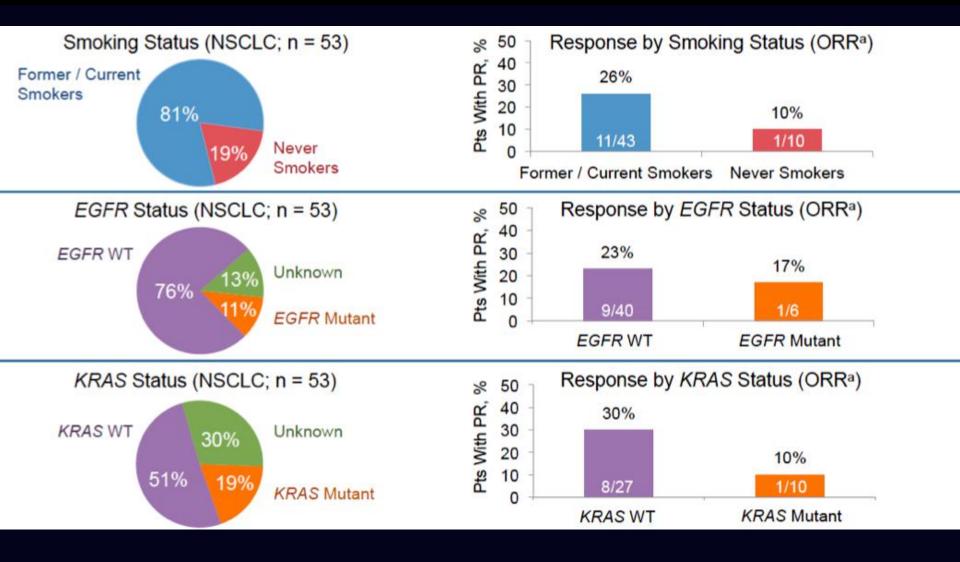
	Single Agent RECIST 1.1 Response Rate (ORR ^a)	SD of 24 Weeks or Longer	24-Week PFS Rate
Overall population (N = 175)	21%	19%	42%
NSCLC (n = 53)	23%	17%	45%
Nonsquamous (n = 42)	21%	17%	44%
Squamous (n = 11)	27%	18%	46%

^a ORR includes investigator-assessed unconfirmed and confirmed PR. Six patients who did not have a post-baseline scan were included as non-responders. Patients first dosed at 1-20 mg/kg by Oct 1, 2012; data cutoff Apr 30, 2013.

MPDL3280A Phase Ia: Best Response by PD-L1 IHC Status - NSCLC

Diagnostic Population ^a (n = 53)	ORR ^b % (n/n)	PD Rate % (n/n)
IHC 3	83% (5/6)	17% (1/6)
IHC 2 and 3	46% (6/13)	23% (3/13)
IHC 1/2/3	31% (8/26)	38% (10/26)
All Patients ^c	23% (12/53)	40% (21/53)

^a IHC 3: \geq 10% tumor immune cells positive for PD-L1 (IC+); IHC 2 and 3: \geq 5% tumor immune cells positive for PD-L1 (IC+); IHC 1/2/3:

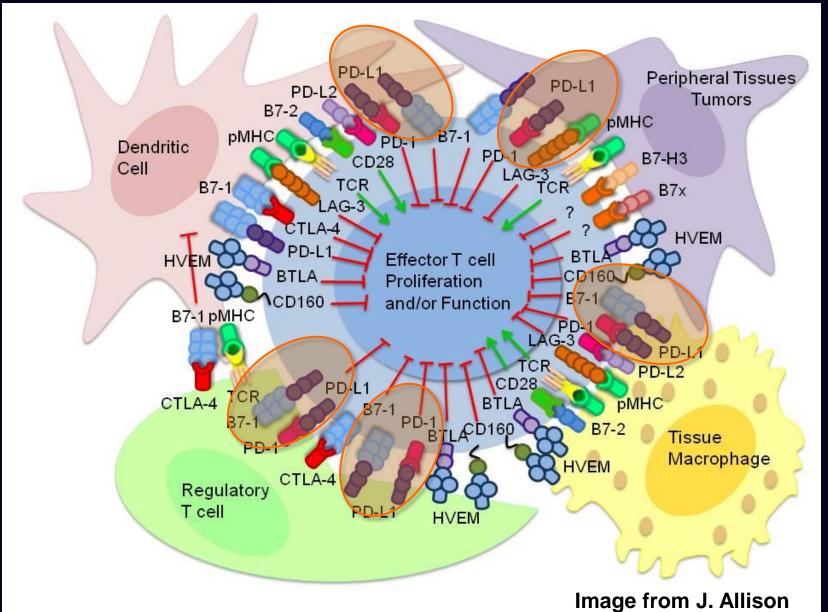

 \geq 1% tumor immune cells positive for PD-L1 (IC+); IHC 0/1/2/3: all patients with evaluable PD-L1 tumor IC status.

^b ORR includes investigator-assessed unconfirmed and confirmed PR.

 $^{\rm c}$ All patients includes patients with IHC 0/1/2/3 and 7 patients have an unknown diagnostic status.

Patients first dosed at 1-20 mg/kg by Oct 1, 2012; data cutoff Apr 30, 2013.

MPDL3290A: Specific predictors


Horne et al., WLCC 2013 #MO18.1

Histology is not predictive through all available data

	Squamous	Non-
	Carcinoma	squamous
Nivolumab (PD-1)	17%	18%
	(9/54)	(13/74)
MPDL3280A (PD- L1)	33%	19%
	(3/9)	(6/31)
Pembrolizumab (irRECIST)	25%	23%
	(66/262)	(60/262)

PD-L1 as a predictive biomarker / inclusion criteria THE CHALLENGE OF THE BIOMARKER

Intricate role of PD-1 signalling with different cell types

PD-L1 analysis: differences in evaluation and interpretation

Agent	Assay	Analysis	Definition of positivity	PD-L1 expression
Nivolumab (anti-PD-1) ^{1–4}	Dako automated • Au IHC assay (28-8 rabbit Ab) Analytically validated	rchival FFPE	 1% and 5% cut-off among >100 evaluable tumour cells 	 56%: 1% cut-off 49%: 5% cut-off
Pembrolizumab (anti-PD-1) ^{5,6}	Dako automated • An IHC assay (22C3 mouse Ab)	rchival FFPE	 Tumour dependent: Melanoma > 1% NSCLC <u>PD-L1 (+):</u> Strong (≥50%) and weak staining (1–49%) <u>PD-L1 (-):</u> no staining 	 ~25%: ≥50% staining ~45–70%: ≥1% staining
MPDL3280A (anti-PD-L1) ^{7,8}	Ventana • An automated clinical research IHC assay	rchival FFPE	 PD-L1 (+): IHC 3 (≥10%), IHC 2,3 (≥5%), IHC 1,2,3 (≥1%) PD-L1 (-): IHC 1, 0 or unknown 	• 11%: IHC 3 • 75%: IHC 1, 0
MEDI-4736 (anti-PD-L1) ⁹	First-generation • An or Ventana IHC Automated Assay (in dev.)	rchival FFPE	Not reported	Not reported

PD-L1 as a biomarker in NSCLC

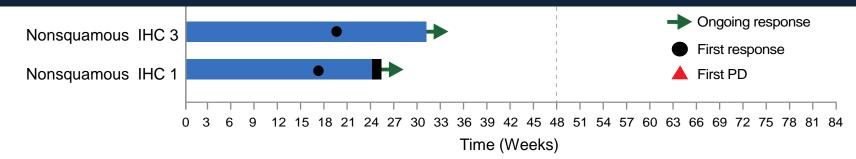
Drug/ Sponsor		Nivolumal BMS	0	Pembrolizumab MSD (Merck)		MPDL3280A Genentech		MEDI4736 MedImmune		
Assay		28-8		22C3					SP263	
Cells scored	Tumo	r cell men	brane	Tumor cell (and stroma)		Infiltrating immune cells				
Tissue		Archival		Recent		Arch./Recent		Arch./Recent		
Setting	1 st line	2L	++	1 st line	2L -	++	2L ++		2L ++	
Cut- point	5%	1%	5%	1%	1%	50%	1%	5%	10%	
ORR in PD-L1 +	50% N=10	13% N=38	15% N=33	26-47% N=45	19-23% N=177	37% N=41	31% N=26	46% N=13	83% N=6	39% N=13
ORR in PD-L1 -	0% N=7	17% N=30	14% N=35	???	9-13% N=40	11% N=88	20% N=20	18% N=33	18% N=40	5% N=19

MPDL3280

Topalian, NEJM 2012 OF Constant Action Constraints (Constant Action Constraints) OF Constraints (Constraints) OF Constraints) OF Constraints (Constraints) OF Constraints (Constraint Daud, AACR 2014 Ghandi, AACR 2014 Rizvi, ASCO 2014, #8009 Garon, ASCO 2014, #8020

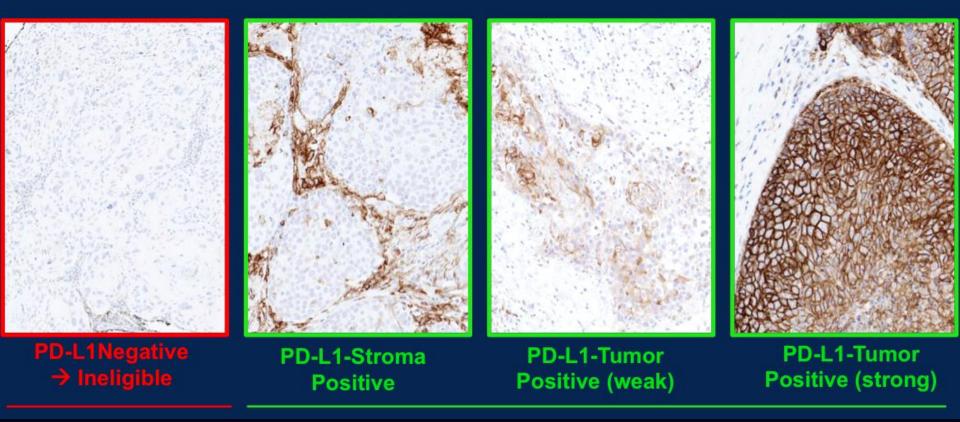
Pembro

Hamid, ASCO 2013, #9010 ↓Herbst, ASCO 2013, #3000 Powderly, ASCO 2013, #3001 Spigel, ASCO 2013, #8008

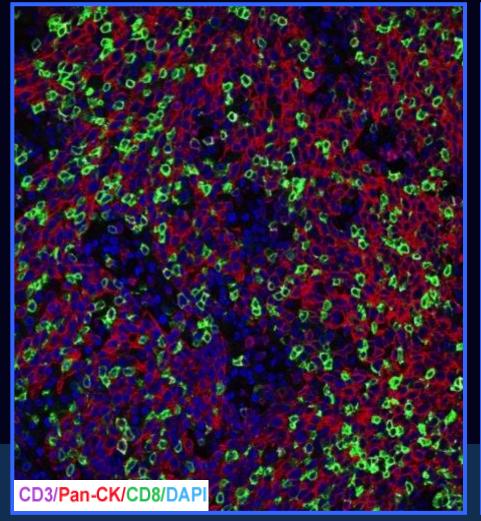

MPDL3280A Phase Ia: Duration of Treatment in Responders - NSCLC

PD-L1 expression is dynamic

ECCO


- PD-L1 is heterogeneous within tissue
- PD-L1 "threshold" is to be defined (tumour material, mAB, technique, sampling, criteria)
- Importance of co-localization with TILs

^a Patient experiencing ongoing benefit per investigator.


Patients first dosed at 1-20 mg/kg by Oct 1, 2012; data cutoff Apr 30, 2013.

Stroma or tumour cells? HNSCC example



Tumor Infiltrating Lymphocytes as a biomarker? The HNSCC example

Diffuse infiltration with CD8+ TILs in HNSCC

Absence of TILs in HNSCC

Presented by: Tanguy Seiwert, ASCO Annual Meeting 2014

PD1/PDL1 summary

Clear evidence of anti PD1/PD-L1 activity

	Anti PD1	Anti PDL1	
	MK-3475	Nivolumab	MPDL3280A
Ν	236	129	53
RR	21%	17%	23%
Follow-up	6.8 m	>1 year	?
PFS			
Median	P: 2.5 m; 26% at 6m Naive: 6.5 m; 51% at 6m	2.3 m (Naive 9 m)	45% at 6m
OS			
Median	P:8.2 m; Naive: NR P:59%, Naive: 86% at 6 m	9.9 months 42% at 1y 24% at 2 y	?

PD1/PDL1 summary

Clear evidence of anti PD1/PD-L1 activity

- > Optimal dose?
- Treatment sequence?
- Combination strategy
 - Chemotherapy
 - Other check point inhibitor
 - Targeted therapy (TKI)
- Pharmacodynamic biomarkers of activity?
 (circulating CD8+Ki-67+ T cells and/or plasma proteins (eg, IL-18))

PD1/PDL1 summary

Predictors of activity: PD-L1 as the biomarker?

- Selection by PD-L1 expression likely enhances response rate, but activity seen in PD-L1 neg
- How do we define PD-L1 positivity? (AB, threshold, analysis)
- How does PD-L1 evolve over time (stage/ disease course / treatments)
- Is PD-L1 more strongly expressed in defiend patients subgroups (smokers?)
- Randomized trials with PD-L1 stratification awaited!

Thanks for your attention

