Lung Cancer Combination Immunotherapies

David Carbone, MD PhD Director, James Thoracic Center The Ohio State University Columbus, Ohio USA

www.esmo.org

ESMO SYMPOSIUM ON Immuno-oncology

Disclosure slide

- Bayer Health Care
- Biodesix
- Biothera
- Boehringer Ingelheim
- Bristol Myers-Squibb (BMS)
- Clovis Oncology
- Eisai Inc.
- Genentech/Roche
- GlaxoSmithKline (GSK)
- MedImmune
- Merck
- Novartis
- •21-22 November 2014, Geneva, Switzerland

- Peregrine Pharmaceuticals, Inc.
- Pfizer
- Synta Pharmaceuticals Corp.

This includes receipt of grants/research support, receipt of honoraria or consulting fees, and participation in company sponsored speaker's bureaus.

I-O agents have a unique MoA, offering the opportunity for combination with other agents

Drake C. *Ann Oncol.* 2012;23(suppl 8):viii41–viii46; Hannani D, et al. *Cancer J* 2011;17:351–358; Ménard C, et al. *Cancer Immunol Immunother.* 2008;57:1579–1587; Ribas A, et al. *Curr Opin Immunol.* 2013:25:291–296.

Examples of ongoing combination trials with I-O therapies, many more in development

	Chemotherapy	Radiotherapy	Targeted	Immunotherapy
Nivolumab (anti-PD-1)	+ cisplatin/gemcitabine, cisplatin/pemetrexed or carboplatin/paclitaxel (NCT01454102)	NR	+ bevacizumab or erlotinib (NCT01454102)	+ ipilimumab (NCT01454102) + anti-KIR (NCT01714739) + anti-LAG3 (NCT01968109)
Pembrolizumab (anti-PD-1)	+ cisplatin/pemetrexed or carboplatin/paclitaxel (NCT01840579) + paclitaxel/carboplatin ± bevacizumab (NCT02039674)	NR	+ gefitinib or erlotinib (NCT02039674)	+ ipilimumab (NCT02039674) + INCB024360 (NCT02178722)
MEDI-4736 (anti-PD-L1)	NR	NR	+ gefitinib (NCT02088112) + AZD9291 (NCT02143466)	+ tremelimumab (NCT02000947, NCT02141347)
MPDL3280A (anti-PD-L1)	NR	NR	+ erlotinib (NCT02013219) + cobimetinib (NCT01988896)	+ ipilimumab (NCT02174172)
lpilimumab (anti-CTLA-4)	Various (NCT00527735; NCT01165216; NCT01285609; NCT01331525; NCT01450761;NCT1454102)	+ stereotactic radiosurgery* (NCT02107755, NCT02239900) + ionizing radiation (NCT02221739)	+ erlotinib or crizotinib (NCT01998126)	+ nivolumab (NCT01454102) + pembrolizumab (NCT02039674)
Tremelimumab (anti-CTLA-4)	NR	NR	+ gefitinib (NCT02040064)	+ MEDI-4736 (NCT02000947)

*Trial in patients with melanoma with metastatic disease to a visceral organ (lung, liver, brain, adrenal, nodal station outside the regional lymph drainage of the primary, vertebral bodies).

NR = no trials reported.

www.clinicaltrials.gov. Accessed June 2014.

I-O agents have a unique MoA, offering the opportunity for combination with other agents

Drake C. *Ann Oncol.* 2012;23(suppl 8):viii41–viii46; Hannani D, et al. *Cancer J* 2011;17:351–358; Ménard C, et al. *Cancer Immunol Immunother.* 2008;57:1579–1587; Ribas A, et al. *Curr Opin Immunol.* 2013:25:291–296.

Response Patterns for Immunotherapy Compared With Targeted Therapy

Ribas A, et al. Clin Cancer Res. 2012;18:336-341.

Combining Immunotherapy and Conventional Therapies

Adapted from Ribas A, et al. Clin Cancer Res. 2012;18:336-341.

Is the immune system relevant in tumors with "driver oncogenes"?

The immune system and "driver oncogenes"

Rakhra and Felsher, Cancer Cell, 2010

Immune system and MYC

Rakhra and Felsher, Cancer Cell, 2010

Restoration of DLL-1 in Bone Marrow Inhibits Tumor Growth

Huang and Carbone, Cancer Research 2011

Induction of Mutant p53-Specific Immune Response by Clustered DLL1

Huang and Carbone, Cancer Research 2011

Clustered DLL1 improves progressionfree survival after oncogene-targeted therapy

Control

CA209-012 Study Design: Nivolumab in Combination With Erlotinib

Stage IIIB/IV, EGFR MT, non-squamous NSCLC, no prior chemotherapy for advanced NSCLC and ECOG PS 0 or 1^{a,b}

> Nivolumab 3 mg/kg IV Q2W + erlotinib 150 mg/day PO until disease progression or unacceptable toxicity^c

Primary objective: safety and tolerability Secondary objectives: ORR (by RECIST v1.1)^d and PFS rate at 24 wks Exploratory objective: OS

^aSite-determined EGFR mutation test
^bPrior use of EGFR TKIs was allowed
^cPts were permitted to continue study treatment beyond RECIST v1.1-defined progression if they were considered to be deriving clinical benefit and tolerating study treatment
^dResponse was assessed at the beginning of wks 11, 17, 23, and every 3 months thereafter until disease progression
ECOG PS = Eastern Cooperative Oncology Group performance status; ORR = objective response rate; OS = overall survival; PO = oral administration; Q2W = every two wks; RECIST = Response Evaluation Criteria In Solid Tumors; wks = weeks

Tumor response in NSCLC pts treated with nivolumab plus erlotinib

	Prior treatment with erlotinib (n = 20)	No prior treatment with erlotinib (n = 1)	
Confirmed ORR, n (%) [95% CI]	4 (19) [5, 42]		
Ongoing responders, n (%)	2 (67)	1 (100)	
Best overall response, n (%) PR ^a SD PD	3 (15) 9 (45) 8 (40) ^b	1 (100) 0 0	
Response duration by pt, wks	60.1, 64.6+, 70+	83.7+	
SD duration by pt, wks	9.9+, 15.7, 22.3, 22.7+, 29.4, 35.9, 49.4, 52.7, 53.0	_	
PFS			
PFS rate at 24 wks, % (95% CI)	50 (27, 70)		
Median PFS, wks (range)	29.4 (4.6, 93.1+)		
OS			
18-month OS rate, % (95% CI)	64 (39, 81)		
Median OS, wks (range)	NR (10.7+, 110.3+)		

^aAll PRs were confirmed by a subsequent tumor assessment per RECIST v1.1 ^bIncludes one pt with an unconventional "immune-related" response

+ = censored; CI = confidence interval; NR = not reached

Characteristics of Pts With Tumor Regression on Nivolumab Plus Erlotinib

		PFS (wks)ª			Nivolumab + erlotinib (n = 21)	
Pt	EGFR MT	Prior erlotinib	Prior afatinib/ cetuximab	Rebiopsy	Treatment duration (wks)	PFS⁵ (wks)
1	DEL19	90	n/a	T790M+	66+	80
2	DEL19	40	15	T790M–	61	80+
3°	L858R	26	n/a	T790M–	108+	69
4 ^d	L858R/ S768I	n/a	n/a	n/a	104+	93+
5 ^e	L858R	55	34	T790M+	104+	9

^aInvestigator-reported PFS

^bTumor assessments were performed until disease progression, including after discontinuation of treatment

°Pt continues trial therapy after excision of solitary site of growth, with sustained response at other sites

dErlotinib-naïve pt

^ePt with PD by RECIST v1.1; however, this pt exhibited an unconventional "immune-related" response, with a 51% reduction in target lesions (maximum decrease) after initial progression in non-target lesions

+ = ongoing; n/a = not available

Results(cont)

Characteristics of Response in NSCLC Pts Treated With Nivolumab Plus Erlotinib

^aErlotinib-naïve pt ^bT790M-positive pt

Percent Changes in Target Lesion Tumor Burden in NSCLC Pts Treated With Nivolumab Plus Erlotinib

Percent Change in Target Lesions From Baseline

^aOne pt exhibited an unconventional "immune-related" response (ongoing), with a 51% reduction in target lesions (maximum decrease) after initial progression in non-target lesions (included here as having PD) ^bOnly includes pts with baseline target lesion(s) and at least one complete post baseline targe<u>t lesion assessment</u>

Percent Changes in Target Lesion Tumor Burden in NSCLC Pts Treated With Nivolumab Plus Erlotinib

Best percent change in target lesion tumor burden from baseline

^aOne pt exhibited an unconventional "immune-related" response (ongoing), with a 51% reduction in target lesions (maximum decrease) after initial progression in non-target lesions (included here as having PD) ^bOnly includes pts with baseline target lesion(s) and at least one complete post baseline target lesion assessment

PFS and OS in NSCLC Pts Treated With Nivolumab Plus Erlotinib

- Most treatment-related adverse events (AEs) were low grade
- No grade 4 or 5 AEs were reported
- One pt (5%) had grade 1 pneumonitis
- Treatment-related diarrhea (n = 2, both grade 3), increased aspartate aminotransferase (AST) (n = 1, grade 3), increased alanine aminotransferase (ALT), flushing, and tubulointerstitial nephritis (n = 1 each, grade 2) led to discontinuation of study medication in 4 pts (19%)

One pt had both grade 3 diarrhea and grade 2 flushing

 At the time of analysis, 9 pts had died, including 8 due to disease progression and 1 due to an unknown cause

Erlo-Nivo combination conclusions

- Treatment with nivolumab plus erlotinib may provide durable clinical benefit in chemotherapy-naïve, EGFR MT pts previously treated with EGFR TKI therapy
 - Observed duration of response and prolonged SD are encouraging relative to other available therapies for such pts
 - Responses were seen across EGFR MT subtypes, including pts with/without T790M mutations
- Nivolumab in combination with erlotinib was associated with a safety profile that reflected additive toxicities of the individual agents and was manageable using safety algorithms
- These findings support further evaluation of anti-PD-1 and EGFR inhibitor combinations in this pt population

I-O agents have a unique MoA, offering the opportunity for combination with other agents

Drake C. Ann Oncol. 2012;23(suppl 8):viii41–viii46; Hannani D, et al. Cancer J 2011;17:351–358; Ménard C, et al. Cancer Immunol Immunother. 2008;57:1579–1587; Ribas A, et al. Curr Opin Immunol. 2013:25:291–296.

Anti-CTLA-4 plus chemotherapy as 1st-line treatment: ipilimumab plus carboplatin/paclitaxel as an example

CA184-041: phase 2 study results, no prior therapy for lung cancer, stage IIIB/IV NSCLC, ECOG PS ≤1, all histologies

Lynch T, et al. J Clin Oncol. 2012;30:2046–2054.

CA209-012 (CheckMate 012) Study Design: Nivolumab in Combination With Chemotherapy

Chemotherapy-naïve patients with stage IIIB or IV NSCLC

Carb = carboplatin; Cis = cisplatin; Gem = gemcitabine; ORR = objective response rate; OS = overall survival; Pac = paclitaxel; Pem = pemetrexed; PFS = progression-free survival; Q3W = every three weeks

Efficacy Endpoints

	Nivolumab 10 mg/kg			Nivolumab 5 mg/kg
	Gem/Cis (n = 12)	Pem/Cis (n = 15)	Pac/Carb (n = 15)	Pac/Carb (n = 14)
ORR, %	33	47	47	43
SD, %	58	47	27	43
18-month OS rate, %	33	60	40	86
Median OS, weeks	51	83	65	NR

NR = not reached

Best Percent Change in Target Lesions

Percent Change in Target Lesions

Responses Can Persist Following Treatment Discontinuation

Efficacy Endpoints According to Baseline PD-L1 Expression

	Baseline PD-L1 expression ^a		
	PD-L1+	PD-L1-	
Samples sufficient for analysis, n	17	27	
ORR, ^b %	53	41	
18-month OS rate, %	59	51	
Median OS, weeks	88	83	

^aPositivity defined as tumor cell membrane staining with ≥5% expression in a minimum of 100 evaluable cells ^bConfirmed PRs or CRs only (per RECIST v1.1)

Overall Survival by Treatment Arm

Chemo-Nivo conclusions

- ORR for nivolumab plus chemotherapy in 1st-line treatment of patients with advanced NSCLC are similar to those previously reported for chemotherapy alone
- Nivolumab 5 mg/kg Q3W in combination with paclitaxel/carboplatin may provide clinical benefit beyond nivolumab monotherapy or single modality chemotherapy
 - Encouraging 18-month OS rate of 86% with a lack of progressive disease at first restaging
- Responses were observed regardless of tumor PD-L1 expression
- Nivolumab plus chemotherapy demonstrates a manageable safety profile, reflecting additive toxicities of individual agents
- These data support further evaluation of nivolumab 5 mg/kg Q3W in combination with chemotherapy

Epigenetic Priming for Chemotherapy and PD-1 Blockade

Tumor-intrinsic effects of combination epigenetic therapy

Romodepsin-induced T cell chemokine expression is NF-κB-dependent (mouse LKR-13 lung cancer cell line)

Amer Beg, unpublished

Romidepsin enhances response to anti-PD-1 (day 15, 17, 19)

Amer Beg, unpublished

Epigenetic lung cancer study - trial schema

- Single-arm phase II
- Simon two-stage design
- 5AC dosing = $40 \text{ mg/m}^2 \text{ SQ}$ daily on days 1-6 and 8-10
- Entinostat dosing = 7 mg PO days 3 & 10
- Cycle length = 28 days
- 3% RR, Median Survival 8.6 months

Best Response to Therapy Subsequent to Epigenetic Therapy (N=28)

Immunotherapy After Epigenetic Therapy

Epigenetic Therapy Followed by Anti-PD-L1: An example of response

10/2011

12/2011

Pt 010-6084 – History 64 y/o Diagnosed with IIIB adenoca Rx with XRT+ Tax/carbo, pemetrexed + carbo, Entinostat + 5aza x 6 cycles M. Brock, C. Rudin, J. Brahmer, S. Baylin

Synergy between Epigenetic Modulation and PD-1 pathway blockade - Unleashing the Perfect Storm against Tumors

AZA/HDACi Rx

Epigenetic Priming Study Design

I-O agents have a unique MoA, offering the opportunity for combination with other agents

Drake C. *Ann Oncol.* 2012;23(suppl 8):viii41–viii46; Hannani D, et al. *Cancer J* 2011;17:351–358; Ménard C, et al. *Cancer Immunol Immunother.* 2008;57:1579–1587; Ribas A, et al. *Curr Opin Immunol.* 2013:25:291–296.

Mechanism of Action of PD-1 and CTLA-4 Blockade

MHC = major histocompatibility complex; TCR = T-cell receptor

Brahmer JR, et al. *J Clin Oncol* 2010, Wang C, et al. *Cancer Immunol Res* 2014, Pardoll DM. *Nat Rev Cancer* 2012;12:252–64.

CA209-012 Study Design: Nivolumab Plus Ipilimumab

^aPts were permitted to continue study treatment beyond RECIST v1.1-defined progression if they were considered to be deriving clinical benefit and tolerating study treatment ^bResponse was assessed at wks 10, 17, and 23, and every 3 months thereafter until disease progression non-sq = non-squamous; Q2W = every two wks; Q3W = every three wks; RECIST = Response Evaluation Criteria In Solid Tumors; sq = squamous; wks = weeks

Best Percent Change in Target Lesion Tumor Burden From Baseline in NSCLC Pts Treated With Nivolumab Plus Ipilimumab

Only includes pts with baseline target lesion and ≥1 post-baseline target lesion assessment with non-missing value

Characteristics of Response by Treatment Arm in NSCLC Pts Treated With Nivolumab Plus Ipilimumab

Nivolumab 1 mg/kg + ipilimumab 3 mg/kg

Nivolumab 3 mg/kg + ipilimumab 1 mg/kg

Percent Changes in Target Lesion Tumor Burden From Baseline in NSCLC Pts Treated With Nivolumab Plus Ipilimumab

PFS and OS in NSCLC pts Treated With Nivolumab Plus Ipilimumab

Percent Changes in Target Lesion Tumor Burden and PFS by PD-L1 Status in NSCLC Patients Treated With Nivolumab Plus Ipilimumab

^aOnly includes pts with baseline target lesion and at least on-baseline target lesion assessment with missing value

Safety

- Adverse events (AEs) were managed using well established safety guidelines
- The majority of toxicity occurred during the induction phase (nivolumab + ipilimumab Q3W for four cycles) as compared with the maintenance phase
 - Across arms, grade 3–4 AEs were reported in 32– 50% of pts and 21–27% of pts during induction and maintenance, respectively

Ipi-Nivo conclusions

- Treatment with nivolumab plus ipilimumab was associated with a safety profile that was managed using well-established safety guidelines
- The nivolumab plus ipilimumab regimen provided durable responses as first-line treatment for pts with advanced NSCLC, regardless of histology
- Activity was observed with nivolumab plus ipilimumab in PD-L1⁺ and PD-L1⁻ pts
- The safety and clinical activity of nivolumab plus ipilimumab will be further assessed at additional specified doses and schedules

I-O agents have a unique MoA, offering the opportunity for combination with other agents

Drake C. *Ann Oncol.* 2012;23(suppl 8):viii41–viii46; Hannani D, et al. *Cancer J* 2011;17:351–358; Ménard C, et al. *Cancer Immunol Immunother.* 2008;57:1579–1587; Ribas A, et al. *Curr Opin Immunol.* 2013:25:291–296.

ESMO SYMPOSIUM ON Immuno-oncology

Radiation and Immunotherapy

21-22 November 2014, Geneva, Switzerland

www.esmo.org

Tang et al, Cancer Immunol Res, 2(9); 831-8. 2014

Potential of anti-CTLA-4 plus radiation: ipilimumab in one patient with melanoma as an example

- The target and other lesions regressed
- Regression of distant lesions may be due to an enhanced systemic response

Figure adapted from Postow M, et al. N Engl J Med. 2012;366(10): 925–931.

STIMILI: A randomized phase II trial of consolidation ipilimumab vs placebo in limited-stage SCLC after chemoradiotherapy

Early Stage disease

Combination with surgery

If no progression is seen at D20 CT, an additional 2 cycles are given before surgery

Combinations and new directions

- Combinations are being studied with
 - PD-1 and anti-CTLA4 or other immune modulators
 - PD-1 and chemotherapies, first and later lines
 - PD-1 and targeted therapies, up-front or upon resistance
 - Neoadjuvant/Adjuvant
 - Radiation therapy
 - Vaccines
 - Other biologics, e.g. bevacizumab

Summary

- Immunotherapy has clear activity in lung cancer as a single agent
- Modest and manageable side-effects that differ from other therapies enable the testing of combinations
- Many combinations are being tested with promising results