Adoptive Cell Transfer (ACT)

John Haanen

Aim of this presentation

- Basic aspects of ACT
- How does it work and how well does it work?
- Is there still a place for ACT in the era of checkpoint inhibitors?

What is ACT?

 Infusion of an immune cell product with the aim to induce or augment an anti-tumor immune response

Which cells are transferred?

- Mostly CD3+ T cells
 - Tumor-infiltrating lymphocytes
 - Antigen-receptor gene modified T cells (blood derived)
 - TCR gene modified T cells
 - Chimeric antigen receptor (CAR) gene modified T cells
 - T cell clones/lines (oligoclonal population) from blood
- Other cell types: NK cells, DC

How does ACT work?

How effective is ACT?

ACT with CD3+ T lymphocytes

How effective is ACT?

Infusion of peripheral blood derived T cells

Infusion of TCR gene modified T cells

Infusion of TIL

Isolation of melamoma-specific CD8 T cells from peripheral blood

Infusion of MART-1 specific T cells

Table 1. Patient Demographics and Treatment Characteristics											
Patient No.	Age (years)	_		Prior Therapy	Disease Sites	Melan-A Expression*	No. of T-Cell Infusions	Adverse Effects	Eosinophilia (%)†	Clinical Course	Duration of Clinical Course (months)
1	50	F	80	Chemo/immuno	Sk/Lu	3+	3	Fever I°	13	PD	
2	50	M	80	Chemo/immuno	Lu/Li/B/Sk	2+	3	Fever I°	6	PD	
3	39	F	100	Chemo/immuno	Lu/Li/B	3+	3	Fever I°	12	PD	
4	35	M	100	Chemo/immuno	Lu/LN	3+	3	No	No	PD	
5	62	M	100	Chemo/immuno	LN	2+	10	Fever II°, chills	51	PR	11
6	60	M	90	Chemo/immuno	LN	3+	5	Fever II°, chills	23	SD	3
7	58	F	90	Chemo/immuno	LN/Sk	2+	3	No	No	PD	
8	63	M	80	IFN/chemo	Sk	3+	7	Fever II°, chills	26	MR	14
9	41	F	100	IFN/chemo	Li/LN	3+	3	No	No	PD	
10	68	F	90	Chemo/immuno	LN/Sk	3+	3	No	No	PD	
11	59	F	100	IFN/chemo	LN	3+	9	Fever II°, chills	14	CR	24+

Abbreviations: KPS, Karnofsky performance status; F, female; Chemo, chemotherapy; Immuno, immunotherapy; Sk, skin; Lu, lung; Fever I°, WHO grade I, < 38°C; PD, progressive disease; M, male; Li, liver; B, bone; LN, lymph node; Fever II°, WHO grade II, 38-40°C; PR, partial regression; SD, stable disease; MR, mixed response; IFN, interferon; CR, complete regression.

^{*}Staining of tumor specimens was performed with an anti-Melan-A (A103; Novocastra, Newcastle, United Kingdom) monoclonal antibody; 2+, 50-75% of cells reactive; 3+ > 75% of cells reactive.

[†]Maximum peak eosinophil levels after T-cell transfer; eosinophils % of total leukocytes.

Infusion of MART-1 and gp100specific T cell clones

Table 1. Patient demographics and clinical summary

			Pretreatme	ent status		No. of in	fusions		Response	
ID no.	Age	Sex	Previous Tx*	Disease sites†	Target antigen	No IL-2	+IL-2	Toxicity [‡]	Туре	Duration§
1017-1	45	F	IFN	Skin, LN	MART1	4	3	F, M	Stable disease	21.3
1017-2	46	F	Chemo	Lu, LN, CW	MART1	1	3	F, M, R	Minor [¶]	2.0
1017-3	50	F	Bio-chemo, IFN	Lu, liver	MART1	1	3	None	Progressive disease	_
1017-4	55	M	IFN	Lu	gp100	1	3	F, M	Stable disease	3.6
1017-5	56	F	Chemo	Skin, LN	MART1	1	2	F, M	Stable disease	15.2
1017-6	53	F	Bio-chemo	Lu	gp100	1	3	F, M	Mixed [∥]	6.8
1017-7	50	M	Bio-chemo	Lu, LN	gp100	1	3	F	Stable disease	14.7
1017-8	47	F	Chemo, IFN	Lu, BrPl	MART1	1	3	F, M	Minor**	15.3
1017-9	59	M	Bio-chemo	Lu, liver	gp100	1	5	F, M	Stable disease	7.0
1017-10	38	F	Bio-chemo	Lu, liver	gp100	1	2	F	Progressive disease	_
	49.9					13	30		-	10.9

Yee et al. PNAS 2002

Transferred melanoma-specific CD8⁺ T cells persist, mediate tumor regression, and acquire central memory phenotype

Aude G. Chapuis^a, John A. Thompson^b, Kim A. Margolin^b, Rebecca Rodmyre^a, Ivy P. Lai^a, Kaye Dowdy^a, Erik A. Farrar^a, Shailender Bhatia^b, Daniel E. Sabath^c, Jianhong Cao^a, Yongqing Li^a, and Cassian Yee^{a,1}

^aProgram in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; ^bGeneral Oncology and Hematology, Seattle Cancer Care Alliance and University of Washington, Seattle, WA 98109; and ^cDepartment of Laboratory Medicine, University of Washington, Seattle, WA 98195

Edited by Tak W. Mak, The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute at Princess Margaret Hospital, University Health Network, Toronto, ON, Canada, and approved February 3, 2012 (received for review August 30, 2011)

ORIGINAL ARTICLE

Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha

Els M. E. Verdegaal · Marten Visser · Tamara H. Ramwadhdoebé · Caroline E. van der Minne · Jeanne A. Q. M. J. van Steijn · Ellen Kapiteijn · John B. A. G. Haanen · Sjoerd H. van der Burg · Johan W. R. Nortier · Susanne Osanto

The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Treatment of Metastatic Melanoma with Autologous CD4+ T Cells against NY-ESO-1

Naomi N. Hunder, M.D., Herschel Wallen, M.D., Jianhong Cao, Ph.D., Deborah W. Hendricks, B.Sc., John Z. Reilly, B.Sc., Rebecca Rodmyre, B.Sc., Achim Jungbluth, M.D., Sacha Gnjatic, Ph.D., John A. Thompson, M.D., and Cassian Yee, M.D.

Conclusion

- Infusion of peripheral blood derived melanomaspecific T cells is feasible
- Time consuming (4-16 weeks)
- Few but sometimes lasting responses are seen
- How to improve?
 - Are we targeting the right antigens?
 - Are we infusing the right T cells?
 - Combination therapy?

Infusion of gene-modified T cells

Genetically modified peripheral blood lymphocytes

Schedule of treatment

Clinical experience with TCR gene therapy

- 2006: MART-1 TCR gene therapy
 - RR 13% (n=15)(Morgan et al., Science 2006)
- 2009: MART-1 and gp100 TCR gene therapy
 - RR 30% (MART-1 TCR; n=20)
 - RR 19% (murine gp100 TCR; n=16)
 (Johnson et al., Blood 2009)

DMF5 and gp100 specific TCR were highly expressed by transduced CD4 and CD8 T cells

Clinical activity of MART-1 and gp100specific TCR gene therapy

Clinical experience with TCR gene therapy

- 2006: MART-1 TCR gene therapy
 - RR 13% (n=15)(Morgan et al., Science 2006)
- 2009: MART-1 and gp100 TCR gene therapy
 - RR 30% (MART-1 TCR; n=20)
 - RR 19% (murine gp100 TCR; n=16)
 (Johnson et al., Blood 2009)
- 2014: MART-1 TCR gene therapy + DC vaccination
 - Response in 11/14 (not according RECIST)
 - SD at 90 days in 50%(Chodon et al. Clin Cancer Res 2014)

Schedule and persistence of gene modified T cells after infusion

Clinical responses upon adoptive T-cell transfer

TCR gene therapy for melanoma

- 2006: MART-1 TCR gene therapy
 - RR 13% (n=15)(Morgan et al., Science 2006)
- 2009: MART-1 and gp100 TCR gene therapy
 - RR 30% (MART-1 TCR; n=20)
 - RR 19% (murine gp100 TCR; n=16)
 (Johnson et al., Blood 2009)
- 2014: MART-1 TCR gene therapy + DC vaccination
 - Response in 11/14 (not according RECIST)
 - SD at 90 days in 50%(Chodon et al. Clin Cancer Res 2014)
- 2012: MART-1 TCR gene therapy (Haanen et al. unpublished)

Clinical experience with TCR gene therapy

- 2006-2014: MART-1 and gp100 TCR gene therapy
- 2011: NY-eso-1 TCR gene therapy in melanoma and synovial sarcoma
 - RR 45% (n=11) and 67% (n=6)
 (Robbins et al., J Clin Oncol 2011)

Patient characteristics and outcome

	Age . (years) Sex				Cells	IL-2	ov -1 0D0		NY-ESO-1 Tetramer			Tumor Cell Targets (pg/mL IFN-γ)*		
Patient No.			Sites of Disease	Prior Treatment			70 01 000	CD3	Positive % of CD8 % of CD4		Vβ13.1 Positive (% of CD3)	NY-ESO-1 Positive	NY-ESO-1 Negative	Responset
Melanoma														
1	52	M	In	R, S, I	130	6	97	2	86	64	94	515	< 30	PR (8)
2	60	F	sc, lu	S, I	71	6	82	17	76	53	90	3,890	< 30	PD
3	30	F	bo, In, panc, sb	R, S, I	47	1	98	1	80	65	91	11,978	130	PD
4	56	M	lu, ki	R, S, I	50	7	91	9	80	74	94	11,230	< 30	CR (22+)
5	32	M	In	S, C, I	64	4	98	2	85	76	94	26,019	288	CR (20+)
6	38	M	In	S, I	51	7	93	7	87	79	94	28,907	536	PR (3)
7	47	M	ln, lu	R, S, I	23	7	96	4	70	58	90	9,577	178	PD
8	39	F	ln, br, lu	R, S, C, I	38	8	68	32	78	70	94	ND	ND	PD
9	51	F	lu, In, li	S, C, I	31	10	94	6	83	69	96	11,952	35	PD
10	61	M	In, li, spl, lu, bo	R, S, C, I	16	8	84	16	79	56	92	16,063	49	PD
11	46	M	lu, li	R, S, I	37	6	93	7	63	58	85	5,795	< 30	PR (9+)

Robbins et al., J Clin Oncol 2011

Conclusion

- Infusion of TCR gene modified T cells is feasible and can result in objective responses
- Infused T cell can persist for months
- Can be very toxic!
- Finding the right target is key
- Is one target enough?
- How to improve?
 - Combination with other IT?

Infusion of tumor Infiltrating Lymphocytes

- High response rate in phase II trials in multiple centers (US, Israel, NL, UK, DK)
- Clinical effect at least partially mediated by CD8 T cells

Clinical data N10TIL003: ongoing CR at 24 months

Prior to TIL

3 wks post TIL

8 wks post TIL

12 wks post TIL

Biopsy at wk 7 showed no viable tumor cells

TIL therapy

- > 300 metastatic melanoma patients have been treated world wide in at least 8 centers
- Objective responses observed in 38-72% of treated patients
- In ITT analysis (n=80): ORR 29%
- Median survival of treated patients: ± 16
 m
- Long-term CRs

The big unknown

- Which cytotoxic T cells mediate cancer regression?
- Could we specifically boost their numbers?

What could tumor-specific cytotoxic T cells detect on human cancer?

- 1. Self antigens (to which tolerance is incomplete)

 Shared between patients
- 2. 'Neo-antigens', epitopes that arise as a consequence of tumor-specific mutations In large part patient-specific, hence generally ignored

TILs against shared tumor antigens

- In the majority of TILs T cells specific for shared antigens can be found
 - Melanocyte differentiation Ags (Mart-1, gp100, etc)
 - Cancer/Testis gene products (NY-eso-1, MAGE, SSX-2, etc
 - Overexpressed Ags (Meloe etc.)
- Low frequency (mostly below 1%)
- No correlation with response

TIL therapy broadens the tumor-reactive CD8⁺ T cell compartment in melanoma patients

Pia Kvistborg,^{1,†} Chengyi Jenny Shu,^{1,†} Bianca Heemskerk,¹ Manuel Fankhauser,¹ Charlotte Albæk Thrue,² Mireille Toebes,¹ Nienke van Rooij,¹ Carsten Linnemann,¹ Marit M. van Buuren,¹ Jos H.M. Urbanus,¹ Joost B. Beltman,³ Per thor Straten,² Yong F. Li,⁴ Paul F. Robbins,⁴ Michal J. Besser,^{5,6} Jacob Schachter,⁵ Gemma G. Kenter,⁷ Mark E. Dudley,⁴ Steven A. Rosenberg,⁴ John B.A.G. Haanen,¹ Sine Reker Hadrup² and Ton N.M. Schumacher^{1,*}

What could tumor-specific cytotoxic T cells detect on human cancer?

- 1. Self antigens (to which tolerance is incomplete)

 Shared between patients
- 2. 'Neo-antigens', epitopes that arise as a consequence of tumor-specific mutations In large part patient-specific, hence generally ignored

Analyzing the neo-antigen-specific T cell repertoire in human cancer?

Generate map of tumorspecific mutations (ExomeSeq)

Determine which mutated genes are expressed (RNASeq)

MDLVLNELVISLIVESKLLE
HLA-A2 ————
HLA-B7 ————
HLA-C2 ————

Predict epitopes for each mutation/ each HLA-allele in silico

Screen for T cell recognition of mutated epitopes

Pt 008: CR upon TIL therapy

Pt 008: CR upon TIL therapy

Infusion TIL product

Profound neo-antigen reactivity in TIL product

Pt 008: CR upon TIL therapy

Major increase in neo-antigen specific T cell reactivity upon TIL therapy

Pt 004:

Resected tumor material Isolate tumor cells Isolate tumor-infiltrating T cells Screen with MHC multimer technology Identify tumor-specific mutations

Predict potential epitopes

Pt 004:

pMHC multimer B

DNAH17_{H>Y} (0.003%) VLFEDAVA<u>H</u> > VLFEDAVA<u>Y</u> CDK4_{R>L} (1.604%) ARDPHSGHFV > ALDPHSGHFV GCN1L1_{L>P} (0.407%)
ALLET<u>L</u>SLLL > ALLET<u>P</u>SLLL

Pt 004:

pMHC multimer B

DNAH17_{H>Y} (0.003%) VLFEDAVA<u>H</u> > VLFEDAVA<u>Y</u> CDK4_{R>L} (1.604%) ARDPHSGHFV > ALDPHSGHFV GCN1L1_{L>P} (0.407%)
ALLETLSLLL > ALLETPSLLL

Mutations can result in neo-antigens derived from oncogenes and (presumed) passenger genes

Are neo-antigens superior cancer rejection antigens?

Are neo-antigens superior cancer rejection antigens?

- Develop peptide exchange MHC streptamers to create defined TIL products

Are neo-antigens superior cancer rejection antigens?

NETHERLANDS
CANCER
INSTITUTE
ANTONI VAN LEEUWENHOEK

Combined 2.8% 92.4%

1) Inject human melanoma (NSG-mice)

1) Inject human melanoma (NSG-mice)

2a)
Inject autologous
bulk T-cell product

2b)
Inject autologous
neo-Ag enriched
T-cell product

1) Inject human melanoma (NSG-mice)

2a)
Inject autologous
bulk T-cell product

2b)
Inject autologous
neo-Ag enriched
T-cell product

3) Monitor tumor growth

Neo-antigen enriched TIL can mediate superior tumor control

Conclusion

- TIL infusion is feasible and can result in objective responses including durable CRs
- Neo-antigen-specific T cells are present in the majority of melanoma TIL
- Neo-antigen specific TIL play a (superior) role in tumor rejection

Is there a place for ACT in the immune checkpoint blockade era?

Unresolved Q:

- We need a RCT comparing TIL with standard of care
- Can TIL be combined with checkpoint inhibitors?
 (anti-PD1)
- Can TIL be improved by selection of tumor-reactive T cells (CD137 or PD1 enrichment)
- Can TIL be improved by knock-down of PD1 or Ppp2r2d?
- Can we boost the neo-antigen specific cells by vaccines?

European TIL trial consortium

• NL:

- John Haanen: NKI-AVL, Amsterdam, The Netherlands
- Joost van den Berg: TIL production by AmBTU and Sanquin

• DK:

- Inge Marie Svane: Herlev Hospital, Copenhagen,
- Marco Donia: TIL production

• UK:

- Robert Hawkins: University of Manchester and the Christie NHS Foundation Trust, UK
- Ryan Guest: TIL production by CTL

Taking the next step for TIL based ACT

Randomized phase III study comparing TIL based ACT to standard ipilimumab treatment in metastatic melanoma

To obtain EMA approval of 'classical' TIL therapy as an ATMP

TIL preparation harmonization procedure

- Three different production sites at blood supply units
- Establishment of uniform production methods and common SOP
- Validation procedure finalized

Procedure and procotol approved by VHP European Committee

Study design

Patients: 168 patients with metastatic (stage IV) melanoma and a resectable metastasis will be randomized 1:1 between arm A, standard treatment (ipilimumab) and arm B, TIL treatment.

Arm A: standard ipilimumab (3 mg/kg x 1 day i.v., q3w, 4 treatments).

Arm B: non-myeloablative chemotherapy (cyclophosphamide 60 mg/kg/day x 2 days i.v., fludarabine 25 mg/m²/day x 5 days i.v.) followed by intravenous adoptive transfer of at least 5 x 10⁹ TIL followed by high dose interleukin-2 (600.000 IU/kg/dose every 8 hours for up to 15 doses).

Stratification: Patients will be stratified for BRAF V600 mutation, 1st or 2nd line treatment, and treatment center

Study endpoint

Primary endpoint: PFS at 6 months by RECIST 1.1

Secondary endpoints:

- PFS according to RECIST 1.1 and irRC.
- ORR according RECIST 1.1 and irRC
- CR rate
- Overall survival
- Safety
- Constructive technology assessment (CTA) will be performed to evaluate the impact on patient, organizational and economic consequences

Cancer exome-guided immunomonitoring

MHC-based technologies

Chemical Biology

Boris Rodenko Huib Ovaa

CCIT, Copenhagen

Sine Hadrup

STAGE Therapeutics

Lothar Germeroth

Nienke van Rooij

Marit van Buuren

Daisy Philips

Mireille Toebes

Laura van Dijk

Pia Kvistborg

Ton Schumacher

PDX models

Kristel Kemper

Daniel Peeper

Sanger Institute

Sam Behjati

Mike Stratton

Utrecht University

Can Kesmir

Cancer Immunotherapy Dream Team

Clinical translation

Bianca Heemskerk

Sander Kelderman

Raquel Gomez

Joost van den Berg

Samira Michels

Bastiaan Nuijen

Christian Blank