Immune Checkpoints

John Haanen

ANTONI VAN LEEUWENHOEK

Overview

- CTLA4
- PD1/PD-L1
- Other checkpoints

T cell signaling

Signal 1: Antigen recognition

Signal 2: Co-stimulation

Cancer Immunotherapy: CTLA4

- CTLA-4 suppresses T cell activation and inhibits T cell function
- CTLA-4 regulates T cell tolerance
 -- CTLA-4 KO mice develop lethal lymphoproliferative syndrome
- CTLA-4 (Ipilimumab) first drug in this class approved for tumor immunotherapy

CTLA-4 inhibition

Adapted from Lebbé et al. ESMO 2008

CTLA-4 blockade (ipilimumab) can induce long-term survival

(pooled overall survival analysis including Expanded Access Program data from 4846 patients)

Treatment with anti-CTLA-4 mAb

Maker et al., Ann Surg Oncol 2005

Auto-immune uveitis after anti-CTLA-4 treatment

After treatment NETHERLANDS CANCER INSTITUTE

Immune related adverse events upon anti-CTLA-4 mAb treatment

colitis

How does CTLA4 blockade lead to anti-tumor immune responses?

- Two not mutually exclusive mechanisms have been proposed:
- 1. Priming of tumor-reactive T cells
 - Against shared tumor associated antigens
 - Against mutated (neo) antigens
- 2. Depletion of regulatory FoxP3+ T cells from the tumor microenvironment

How does CTLA4 blockade lead to anti-tumor immune responses?

Two not mutually exclusive mechanisms have been proposed:

- 1. Priming of tumor-reactive T cells
 - Against shared tumor associated antigens
 - Against mutated (neo) antigens
- 2. Depletion of regulatory FoxP3+ T cells from the tumor microenvironment

CTLA4 plays a role during T cell priming

Ribas. N Engl J Med 2012

What could tumor-specific cytotoxic T cells detect on human cancer?

- 1. Self antigens (to which tolerance is incomplete) Shared between patients
- 2. 'Neo-antigens', epitopes that arise as a consequence of tumor-specific mutations In large part patient-specific, hence generally ignored

Kvistborg et al., Science Transl Med 2014

Analysis of PBMC from 40 ipilimumab treated melanoma patients for 75 tumor associated antigens

Epitope Sequence	Antigen	Epitope Sequence	Antigen
ACDPHSGHFV	CDK4	SVYDFFVWL	TRP-2
ALKDVEERV	MAGE-C2	TLDSQVMSL	TRP-2
ALSVMGVYV	MAGE-A9	TLNDECWPA	Meloe-1
ALVDAGVPM	CML28 (EXOSC5)	VIWEVLNAV	MAGE-C2
ALYVDSLFFL	PRAME	VLDGLDVLL	PRAME
AMAPIKVRL	PRDX5 (OMT3-12)	VLGEAWRDQV	TRAG-3
AMLGTHTMEV	gp100 / Pmel17	VLHWDPETV	NY-MEL-1
SAWISKPPGV	SOX10	VLPDVFIRCV	GnT-V
CLLWSFQTSA	Tyrosinase	VLYRYGSFSV	gp100
CQWGRLWQL	BING-4 (WDR46)	VYDFFVWLHY	TRP-2
ELAGIGILTV	Melan-A / MART-1	YLEPGPVTA	gp100
FLWGPRALV	MAGE-A3	YLEYRQVPV	MAGE-A6
FVWLHYYSV	TRP-2	YLQLVFGIEV	MAGE-A2
GLIQLVEGV	TRAG-3	YMDGTMSQV	Tyrosinase
GLMDVQIPT	MAGE-A8	GILGFVFTL	Influenza A
GLYDGMEHL	MAGE-A10	GLCTLVAML	EBV BMF1
ILLRDAGLV	TRAG-3	NLVPMVATV	CMV pp65
ILTVILGVL	Melan-A / MART-1	MLLAVLYCL	Tvrosinase
IMDQVPFSV	gp100/Pmel17	MLMAQEALAFL	LÁGE-1
KASEKIFYV	SSX-2	RLMKQDFSV	gp100
KLATAQFKI	CDCA1/NUF3	RLPPKPPLA	Meloe-2
KMVELVHFL	MAGE-A2	RLPRIFCSC	gp100
KTWGQYWQV	gp100	RLQGISPKI	SSX-2
SLLMWITQA	NY-ESO1	SLADTNSLAV	gp100
KVAELVHFL	MAGE-A3	SLLMWITQC	LAGE-1
MLGTHTMEV	gp100	VLPDVFIRC	GnT-V
AWISKPPGV	SOX10	YMMPVNSEV	CDCA1/NUF2
FLWGPRAYA	DAM-6, -10 (MAGE-B1, -B2)	TLDEKVAELV	MAGE-C2
GVYDGREHTV	MAGE-A4	PLPPARNGGL	RAGE-1
KVLEFLAKL	MAGE-C2	QLSLLMWIT	NY-ESO1
LATEKSRWS	B-RAF	KVLEYVIKV	MAGE-A1
LKLSGVVRL	RAGE-1	LLFGLALIEV	MAGE-C2
LLDGTATLRL	gp100	SLDDYNHLV	TRP-2
LVFGIELMEV	MAGE-A3	SLGWLFLLL	TAG-1
LVHFLLLKY	MAGE-A2	KVAELVRFL	MAGE-A8
LVQENYLEY	MAGE-A2	SLLMWITQCFL	NY-ESO1
MLAVISCAV	HERV-K-MEL	SLLQHLIGL	PRAME
		SLYSFPEPEA	PRAME

Kvistborg et al., Science Transl Med 2014

Analysis performed by flow cytometry

Combine two color coded multimers for 26 epitopes and use for staining

Toebes et al., Nat Med 2006; Anderson et al. Nat Protoc 2012

Flow results...

Pretherapy

Kvistborg et al., Science Transl Med 2014

-723

Newly detected T cell responses

Ipilimumab treatment leads to broadening of the anti cancer IR

Kvistborg et al., Science Transl Med 2014

What could tumor-specific cytotoxic T cells detect on human cancer?

- 1. Self antigens (to which tolerance is incomplete) Shared between patients
- 2. 'Neo-antigens', epitopes that arise as a consequence of tumor-specific mutations In large part patient-specific, hence generally ignored

Analyzing the neo-antigen-specific T cell repertoire in human cancer?

Generate map of tumorspecific mutations (ExomeSeq)

Determine which mutated genes are expressed (RNASeq)

Predict epitopes for each mutation/ each HLA-allele *in silico*

Screen for T cell recognitionERLANDS of mutated epitopes

Pt 002: Partial response upon anti-CTLA4 treatment

Van Rooij et al., J Clin Oncol 2013

Analyzing the neo-antigen-specific T cell repertoire in human cancer?

ANTONI VAN LEEUWENHOEK

Analyzing the neo-antigen-specific T cell repertoire in human cancer?

Strong T cell response against an $ATR_{S>L}$ neo-epitope within the tumor

Increased magnitude of neo-antigen-specific T cell response under anti-CTLA4

van Rooij, van Buuren J Clin Oncol 2013

How does CTLA4 blockade lead to anti-tumor immune responses?

Two not mutually exclusive mechanisms have been proposed:

- 1. Priming of tumor-reactive T cells
 - Against shared tumor associated antigens
 - Against mutated (neo) antigens
- 2. Depletion of regulatory FoxP3+ T cells from the tumor microenvironment

Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti– CTLA-4 therapy against melanoma

by Tyler R. Simpson, Fubin Li, Welby Montalvo-Ortiz, Manuel A. Sepulveda, Katharina Bergerhoff, Frederick Arce, Claire Roddie, Jake Y. Henry, Hideo Yagita, Jedd D. Wolchok, Karl S. Peggs, Jeffrey V. Ravetch, James P. Allison, and Sergio A. Quezada

Simpson et al., J Exp Med 2013

Anti-CTLA4 plays a role in T cell priming and Treg depletion

Furness et al., Trends in Immunol 2014

GVAX+α–CTLA-4 combination therapy protects against tumor outgrowth through a CD4+ T cell–dependent mechanism.

α–CTLA-4 therapy does not increase the intratumoral T eff/T reg cell ratio in FcγRIV–/– mice

α-CTLA-4 therapy in FcγRIV-/- mice fails to elicit tumor protection

Does Treg depletion also occur in humans with ipilimumab?

Table 3. Immunomodulatory antibodies in clinical development.

Target	Antibody	Species	lsotype	Predicted ADCC	Company
CTLA-4	lpilimumab	Humanised	lgG1	Yes	Bristol-Myers Squibb
	Tremelimumab	Humanised	lgG2	No	AstraZeneca/Pfizer

Furness et al., Trends in Immunol 2014

Summary CTLA4 blockade

- CTLA4 is an important regulator of peripheral tolerance
- Blockade of CTLA4 can result in anti-tumor immunity
 and auto-immunity
- CTLA4 plays a role during induction of the immune response
- Blockade results in broadening of the anti-tumor immune response
- CTLA4 is highly expressed by Tregs
- Anti-CTLA4 antibody treatment may deplete Tregs from the tumor

PD1 and PD-L1 checkpoint

Freeman & Sharpe. Nat Immunol 2013

Programmed Death-1 receptor (PD1)

- Discovered in 1992 by Honjo and coworkers
 - Upregulated gene in relation to apoptosis
- Member of the Ig superfamily
- Cytoplasmic domains with ITIM and ITSM
 - Recruites phosphatases
 - Inhibits PI3K and AKT activity
- Inducibly expressed by CD4 and CD8 T cells, NKT cells, B cells, monocytes and subtypes of DC
- Expressed by both effector and regulatory T cells
- PD1/PD-L1 interaction involved in tolerance and chronic inflammation
- PD1/PD-L1 contributes to functional T cell exhaustion during chronic infection and cancer
 NETHERLANDS CANCER

ANTONI VAN LEEUWENHOEK

PD1/PD-L1 play a role at the tumor/effector phase

Ribas. N Engl J Med 2012

PD-1 pathway inhibits T cell response directly downstream of the TCR

Freeman PNAS 2008

PD-1/PD-L1 interaction with B7-1

Arlene Sharpe, ASCO 2013

Blocking PD-1 versus PD-L1

Arlene Sharpe, ASCO 2013

Expression of PD1 ligands

	PD-L1 (B7-H1)	PD-L2 (B7-DC)
Hematopoietic cells	DC, macrophages, B cells, T cells, BM-derived mast cells	DC, macrophages, B cells, Th2 cells, BM- derived mast cells
Non-hematopoietic cells	Vascular endothelium, epithelia, muscle, liver, pancreatic islets, placenta, eye	Few, airway epithelia
Stimuli	Interferons (α , β , γ)	IL-4 + GM-CSG
Binding partners	PD1, B7.1	PD1
Expression by tumors	Melanoma, RCC, HNSCC, ovary, NSCLC	

PD-L1 on human tumor cells mediates T cell inhibition

Pardoll DM, Nat Rev Cancer 2012

Expression of PD-L1 by melanoma

A: melanocytic nevus B: primary melanoma C: magnification of B D: subcutaneous metastasis

Taube et al. Science Transl Med 2012

PD-L1 NSCLC Sample IHC staining

PD-L1 = 0% positive Negative PD-L1 = 2% positive Weak Positive (1%-49%)

PD-L1 = 100% positive Strong Positive (50%-100%)

Courtesy of N Rizvi

Expression of PD-L1 co-localizes with TILs

Taube et al. Science Transl Med 2012

PD-1 pathway is a good target for cancer immunotherapy

- PD-1 is highly expressed on tumor-infiltrating T cells and these are functionally exhausted cells
- Blockade of PD-1 or PD-L1 can reinvigorate exhausted TILs, enhancing their expansion, cytokine production, and cytolytic functions

Anti-PD1/anti-PD-L1 mAbs currently in clinical testing

	Target molecule	
Source	PD1	PD-L1 (B7-H1)
Amplimmune Inc./GSK	AMP-224 (PD-L2/IgG1) fusion protein	
BMS	Nivolumab (MDX- 1106)(human IgG4)	MDX-1105/BMS-936559 (human IgG4)
CureTech/Teva	Pidilizumab (CT-011) (humanized IgG1)	
MSD	Pembrolizumab (humanized IgG4)	
Roche/Genentech		MPDL3280A (engineered human IgG1)
MedImmune		MEDI-4736 (engineered human IgG1)
MedImmune	AMP-514	

Adapted from Topalian et al., Curr Opin Immunol 2012

Maximum Percent Change from Baseline in Tumor Size^a (Central Review, RECIST v1.1)

aln patients with measurable disease at baseline by RECIST v1.1 by central review and ≥1 postbaseline assessment (n = 317). Percentage changes >100% were truncated at 100%. Analysis cut-off date: October 18, 2013.

Presented by: Antoni Ribas at ASCO 2014

Overall Survival for Patients with Melanoma Treated with Nivolumab

Presented by: F. Stephen Hodi at ASCO 2014

Pembrolizumab

Baseline: April 13, 2012

April 9, 2013

Contrast READICAT 24, ZENI VISIFAQUE Exec 1222 AV 100 72-year-old male with symptomatic progression after bio-chemotherapy, HD IL-2, and ipilimumab

Conclusion PD1/PD-L1 blockade

- PD1/PD-L1 are involved in peripheral tolerance
- PD1 is expressed by activated and "exhausted" T cells
- Tumors may express PD-L1 as a result of immune interrogation by T cells or as a result of an oncogenic event
- Blockade of PD1/PD-L1 interaction at the tumor site results in tumor destruction and clinical response
- Tumors expressing PD-L1 have a higher chance of responding to PD1 blockade compared to PD-L1 negative tumors
- PD1/PD-L1 blockade is an active treatment for many tumor types (melanoma, RCC, NSCLC, bladder cancer)

Immune related adverse events

Liu et al, Clinical & Translational Immunology (2014)

Checkpoint molecules

ipilimumab + nivolumab, response at 12 weeks

Prior therapy with HD-IL2, multiple resections, Vemurafenib, and RT; LDH > 2000 at baseline; LDH nearly normal within 3 weeks

Courtesy of R. Kefford

Checkpoint molecules

Blank Curr Opin Oncol 2013

Immune Checkpoints

- Blocking of immune checkpoint has revolutionized immunotherapy of cancer
- Many cancer types show reactivity for immune checkpoint inhibition
- No true biomarkers have been found to highly predict response to treatment
- Immune checkpoint inhibitors induce a new class of adverse events
- Immune checkpoint inhibitors can be combined with other treatment

