

(Neo)-Adjuvant Chemotherapy in triple negative early breast cancer

Giuseppe Curigliano MD, PhD

Breast Cancer Program

Division of Experimental Therapeutics

Outline

Neoadjuvant treatment in triple negative early breast cancer

Picking optimal adjuvant chemotherapy for TN early breast cancer

(Neo)Adjuvant therapy in TN EBC

- Who needs more treatment?
- Addition of carboplatin
- Nab-paclitaxel ready for prime time?
- Tumor infiltrating lymphocytes
- Post-neoadjuvant setting

Treatment-oriented classification of sub-groups of breast

Notes			
ER and/or PgR positive >= 1%1			
Multi-parameter molecular marker "good'			

- burden ("luminal A-like") <u>intermediate</u>
- if available. High ER/PgR and clearly low Ki-67. Low or absent nodal involvement (N 0-3), smaller T size (T1 T2) Among multi-parameter molecular markers, only the 21 gene RS reports an intermediate value. Uncertainty persists
- about degree of risk and responsiveness to endocrine and cytotoxic therapies. low receptor, high proliferation, high Multi-parameter molecular marker "bad" if available. Lower ER/PgR with clearly high burden ("luminal B-like") Ki-67. More extensive nodal involvement, histological grade 3, extensive lymphovascular invasion, larger T size (T3)

Treatment-oriented classification of sub-groups of breast cancer

• ER values between 1% and 9% were considered equivocal. Thus endocrine therapy alone cannot be relied upon for patients with these values.

News and Progress Neoadjuvant

Field or Treatment

Status of research/implications for patient care

Neoadjuvant systemic therapies

An improved pCR rate was observed with carboplatin for patients with triple negative disease. Such improvement was not observed for HER2-positive disease. An improved pCR was also observed in triple negative breast cancer using nab-paclitaxel instead of solvent-based paclitaxel. pCR rates were higher in patients with lymphocyte predominant breast cancer, either triple negative or HER2-positive, who were treated with carboplatin.

FDA statement on pCR

- The absence of any residual invasive cancer on H&E evaluation of the resected breast specimen and all sampled ipsilateral lymph nodes following completion of neoadjuvant systemic therapy (i.e., ypT0 ypTis ypN0 in the current AJCC staging system).
- This definition resumes the current understanding of major features of the intrinsic biology of early-stage breast cancer

pCR as surrogate for survival

pCR as surrogate for survival

No pCR 768 604 429 317 198 125 50 13

Targeting heterogeneity of TNBC

BL1, basal-like 1; BL2, basal-like 2; IM, immunomodulatory; ML, mesenchymal-like; MSL, mesenchymal stem-like; LAR, luminal androgen receptor; AR, androgen receptor;

Outcome of Neoadjuvant Therapy in Patients with BRCA Mutations

n = 90 treated with non-platinum regimens Approximately 85% triple negative

Group	# path CR/# total	%
Overall	14/90	16%
CMF	1/14	7%
Adria/Docetaxel	2/25	8%
AC or FAC	11/51	22%

 MD Anderson retrospective series demonstrated path CR of 46% (26/57) in BRCA carriers.

What About Tumors in Patients with Inherited BRCA Mutation?

- 107 patients with BRCA1 mutations
- Stage I-III disease
- Treatment:
 - Preoperative Cisplatin 75 mg/m² q 3 weeks x 4
 - Mastectomy
- Path CR defined as no invasive tumor in breast/nodes

Pathologic complete response = 61%

Platinum-based neoadjuvant chemotherapy for triple-negative breast cancer

Sikov W, et al. J Clin Oncol 2014

von Minckwitz G, et al. Lancet Oncol 2014

INFORM: preop cisplatin vs AC for BRCA 1/2 carriers

- Multicenter study
- Designed to show 20% improvement in pCR with cisplatin over AC

Principal Investigators:
Nadine Tung and Judy Garber
TBCRRC and other sites

Do We Have Sufficient Data To Incorporate Platinum in Treatment of BRCA Carriers with TNBC?

- May never have large, definitive trial
- Mounting evidence in neoadjuvant and metastatic settings
- Biology is consistent with clinical observations
- Probably ready or close to it ideally would like to see results of neoadjuvant INFORM trial
- How do we do it? Add to standard?
 Substitute for one or more agents?

Is Carboplatin Ready for Primetime in Unselected TNBC in the Adjuvant or Neoadjuvant Setting?

NO

- Need definitive study showing improvement in DFS and/or OS
- If platinum is ultimately used, should it be added to standard therapy or substituted for one or more drugs?
- Are there triple negative subtypes that are particularly sensitive to platinum salts?

Neoadjuvant chemotherapy plus bevacizumab for triple-negative breast cancer

Von Minckwitz G, et al. NEJM 2012:366;299-309

Bear HD, et al. NEJM 2012:366;310-320

Neoadjuvant nabpaclitaxel for triple-negative breast cancer Geparsepto

Neoadjuvant nabpaclitaxel for triple-negative breast cancer Geparsepto

Neoadjuvant nabpaclitaxel for triple-negative breast cancer Geparsepto

New prognostic factors and new targets

Prognostic Ability of the Lymphocyte-predominant Breast Cancer (LPBC) Phenotype.

TNBC DFS

TNBC OS

TILs in HER2 positive and TN breast cancer

Neoadjuvant I-O for triple-negative breast cancer

N=272 Primary endpoint: EFS

Secondary endpoint: pCR (ypT0-ypTis ypN0)

Neoadjuvant I-O for triple-negative breast cancer

N=174 Primary endpoint: pCR (ypT0 ypN0)

Summary for Neo Adjuvant

- pCR increased in TNBC to around 55%
- Adding Carboplatin increased the pCR rate in TNBC
- Do TILs predict Carboplatin benefit in HER2+ patients?
- Should we combine Carboplatin and nab-Paclitaxel to further increas the pCR inTNBC?
- TILs seem to select patients with better response to NAT

Adjuvant CT in TN EBC

Triple-negative Breast Cancer: Is there an optimal adjuvant treatment?

Benefit from CT in TN EBC

Criteria to define optimal regimens

Biological

- Intrinsic heterogeneity within TNBC
- Lack of targeted therapies

Clinical

- Epidemiological links to younger age and heredity
- Higher risk means lower stage threshold for treatment
- Chemo question is not "yes/no?" but "which?"
- Trade-offs still include consideration of short-term and long-term side effects but balanced by tumor risk and treatment needs

Analytical

- Few trials specifically for TNBC
- Subset analyses with familiar limitations, including post hoc analyses and lack of power/events

NSABP B-30. $AC_4 \rightarrow T_4$ vs TAC_4 vs AT_4 Overall Survival and Disease-free Survival.

Swain SM et al. N Engl J Med 2010;362:2053-2065.

NSABP B-30

CALGB 9344: AC x 4 ± Paclitaxel x 4 Outcomes for Subtypes

BCIRG 001: TAC vs FAC Outcome for Subtypes

GEICAM 9906: FEC vs FEC/P Outcomes by Subtypes

Adjuvant therapy in TN EBC

NSABP-B30 AC-T x 8 vs AT x 4 vs TAC x 6

POSSIBLE REGIMENS

- AC-paclitaxel (dose dense)
- AC-weekly paclitaxel
- AC-docetaxel (every 3 weeks)
- FEC-docetaxel

Swain SM et al. N Engl J Med 2010;362:2053-2065

Adjuvant therapy in TN EBC

- Standard chemotherapy agents are effective adjuvant therapy, particularly in TNBC
- Enhancements to adjuvant chemotherapy (addition of taxanes, sequential therapy, schedule) are valuable, particularly in TNBC
- While anthracyclines are standard components of modern adjuvant regimens, questions persist about their importance, particularly in TNBC

Should Stage Affect the Choice of of a Treatment Regimen?

Year of diagnosis	Percent of adjuvant chemotherapy (±trastuzumab) (%)							
uiagiiUsis	HR+HER2-		HR+HER2+		HR-HER2+		Triple-negative	
	T1a	T1b	T1a	T1b	T1a	T1b	T1a	T1b
2003	3%	10%	13%	36%	50%	76%	18%	70%
2005	1%	11%	25%	50%	38%	77%	31%	50%
2009	2%	13%	47%	100%	56%	100%	50%	69%

CMF

Retrospective analysis of **MA-5** suggested **CMF** marginally more effective than CEF in basal-like BC (Cheang et al Clin Can Res 2012)

Docetaxel/Cyclophosphamide (TC)

TC appeared superior to AC in one relatively small trial

Probably at least as good as AC

Would be hesitant about using TC in BRCA mutation carriers

From: Jones, S. et al. J Clin Oncol; 27:1177-1183 2009

Options for Stage I Disease

- Chemotherapy treatment options for low risk disease:
 - 1) simple regimen (AC, TC, CMF)
 - 2) sequential anthracycline/taxane

	Enthusiasm for Chemotherapy	Possible Regimens
Microinvasion only	Virtually none	
T1a	Low to moderate	Simple
T1b	Moderate to high	Simple
T1c	High	Simple or selectively sequential approach

C. Liedtke JCO, 26, 8, 2008: pp. 1275-1281

TILs in residual disease: DFS

TILs in residual disease: OS

Preplanned interim analysis of a randomized, open-label phase III study^[1]

Stratified by ER status, age, neoadjuvant chemotherapy, Wk 24 use of 5-FU, institution, node status Capecitabine Pts 20-74 vrs of age 2500 mg/m²/day PO Days 1-14 Q3W for 8 cycles[‡] with stage I-IIIB HER2- BC and residual disease Hormonal therapy if ER/PgR+ (non-pCR, N+) after neoadjuvant $(n = 455)^{\dagger}$ chemotherapy* and surgery; ECOG PS 0 or 1: no previous oral fluoropyrimidines Hormonal therapy if ER/PgR+ $(N = 910)^{\dagger}$ No further therapy if ER/PgR- $(n = 455)^{\dagger}$ Primary endpoint: DFS

- Secondary endpoints: OS, time from first day of preoperative chemotherapy to recurrence or death, safety, cost-effectiveness
- 1. Toi M, et al. SABCS 2015. Abstract S1-07.
- 2. Ohtani S, et al. SABCS 2013. Abstract P3-12-03.

- *Anthracycline/taxane, anthracycline containing, or docetaxel/cyclophosphamide.
- $^{\dagger}25$ pts were removed from treatment (n = 10) and control (n = 15) arms due to failure to meet eligibility criteria.
- [‡]IDMC recommended extension to 8 cycles following interim safety analysis of first 50 pts receiving 6 cycles.^[2]

Characteristic	Capecitabine (n = 440)	No Capecitabine (n = 445)
Age, median yrs (range)	48 (25-74)	48 (25-74)
Menopausal status, %		
■ Pre	59.3	56.0
■ Post	40.7	44.0
Stage, %		
I, IIA, IB	58.9	62.0
• IIIA, IIIB	40.5	37.5
Hormonal receptor status, %		
■ ER+ or PgR+	63.9	62.9
■ ER- and PgR-	33.4	33.5
Lymph nodes with metastatic disease, %		
• 0	39.3	38.7
■ 1-3	37.5	39.1
■ ≥ 4	22.7	22.2
Histologic effect grading by NAC, %		
■ 0, 1a, 1b	56.4	52.6
■ 2,3	41.6	45.4

 Capecitabine achieved significantly higher 5-yr DFS and OS in HER2- BC pts with residual disease

Characteristic, %	Capecitabine (n = 440)	No Capecitabine (n = 445)	HR (95% CI)	P Value
5-yr DFS	74.1	67.7	0.70 (0.53-0.93)	.00524
5-yr OS	89.2	83.9	0.60 (0.40-0.92)	< .01

Triple negative BRCA mutated

Adjuvant therapy in TN

- Because of the lack of targeted therapy, the intrinsic recurrence risk, and the efficacy of chemotherapy, thresholds for adjuvant chemotherapy treatment for TNBC are low (~0.5 cm, nodenegative) despite the familiar side effects of chemotherapy treatment
- Data suggest "optimal" regimens should include cyclophosphamide, taxanes, and anthracyclines
- Data are <u>insufficient and/or negative</u> for additional treatments such as:
 - Capecitabine
 - Gemcitabine
 - Platinum-based chemotherapy
 - Bevacizumab

Adjuvant therapy in TN

Standard of Care

- based on direct comparisons, subset analyses and considerations of toxicity/tolerability
- sequential anthracycline, cyclophosphamide and taxanebased therapy
- arguably ddAC → paclitaxel
- Alternative regimens
 - Preferred regimen without anthracyclines: TC
 - Preferred regimen without taxanes: AC or CMF
- Neoadjuvant regimens = adjuvant regimens

Research priorities

- Event rates in TNBC enable familiar adjuvant trial designs
- Design & power studies specifically for TNBC outcomes
- Define role of anthracyclines [NSABP B-49] in modern era
- Molecular / genomic correlatives
- Innovative neoadjuvant FDA accelerated approval pathway exists for potent, novel agents studied through add-on design trials with adequate sample size and planned long-term follow-up for EFS / OS, but the relationship of change in pCR and change in EFS remains unclear

Thank you