Breast Cancer in Patients with BRCA1/2 mutations

Shani Paluch-Shimon, MBBS (Hons), MSc Head, Breast Cancer Service for Young Women Institute of Breast Oncology, Division of Oncology

Sheba Medical Centre, Tel Hashomer, Israel

What distinguishes BRCA1/2 associated breast cancer?

- Younger age at diagnosis
- Imaging better visualized on MRI
- Amongst women being screened
 often interval cancers
- Distinct histo-pathological features
- Bilaterality

BRCA 1\2 incidence by age at BC diagnosis

Age at BC diagnosis	N	carriers	%
dx 20-29	11	3	27%
dx 30-39	74	18	24%
dx 40-49	245	29	11.8%
dx 50-59	345	33	9.5%
dx >60	368	27	7.3%

Ashkenazi Jewish cohort

IMAGING FOR SCREENING AND DIAGNOSIS IN BRCA1/2

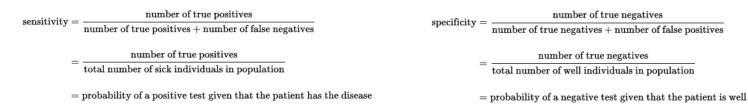

Screening & Diagnosis: MRI in women with high risk of breast cancer

TABLE 2 Published Breast MRI Screening Study Results

	The Netherlands	Canada	United Kingdom	Germany	United States	Italy
No. of centers	6	1	22	1	13	9
No. of women	1,909	236	649	529	390	105
Age range	25-70	25-65	35-49	≥30	≥25	≥25
No. of cancers Sensitivity (%)	50	22	35	43	4	8
MRI	80	77	77	91	100	100
Mammogram	33	36	40	33	25	16
Ultrasound Specificity (%)	n <i>l</i> a	33	n/a	40	n/a	16
MRI	90	95	81	97	95	99
Mammogram	95	>99	93	97	98	0
Ultrasound	n/a	96	n/a	91	n/a	0

n/a = not applicable.

Exclusively BRCA+ cohort

Screening & Diagnosis: MRI in women with high risk of breast cancer

TABLE 3 Rates of Detection and Follow-up Tests for Screening MRI Compared with Mammography

	MRI		Mammography		
	The Netherlands	United Kingdom	The Netherlands	United Kingdom	
Positives	13.7%	19.7%	6.0%	7.2%	
Recalls	10.84%	10.7%	5.4%	3.9%	
Biopsies	2.93%	3.08%	1.3%	1.33%	
Cancers	1.04%	1.44%	0.46%	0.69%	
False negatives	0.23%	0.43%	0.81%	1.52%	

Why is MRI superior to mammography in BRCA+?

- BRCA+ breast tumors are:
- often in younger women with dense breasts sensitivity of mammography inversely related to breast density
- with "pushing margins" rather then scirrhous, irregular margins, giving a more "benign" appearance on mammography
- Less-often associated with DCIS (which often have micro-calcifications that are detected on mammography) – especially true for BRCA1

Distinct features in BRCA1/2 associated breast cancer

BRCA-Related Breast Cancer – distinct features

BRCA1

- *Breast cancer arises at early age
- *Risk of ovarian cancer
- *Most (60-70%) are triple negative and basal-like
- *Breast cancer reported in very limited number of men

BRCA2

- *Breast cancer arises at slightly older age
- *Risk of ovarian cancer
- *Most cancers are ER+ and luminal
- *Breast cancer arises in 5-10% of men

Many similarities, but they are distinct entities and BRCA1 and BRCA2 cancers may not respond Identically to treatment

Predicting BRCA by pathological features

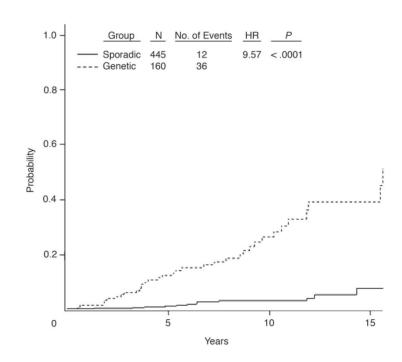
Table 7. Predicted Probabilities of Carrying a BRCA1 Mutation, by Age, ER Status, and Grade

	All Histologies (%)		ER-Positive		ER-Negative		
		Grade 1 (%)	Grade 2 (%)	Grade 3 (%)	Grade 1 (%)	Grade 2 (%)	Grade 3 (%)
Age group							
< 30 years	8	1.1	1.6	2.7	14.4	21.0	35.0
30-34 years	5	0.8	1.2	2.0	10.9	15.9	26.5
35-39 years	2	0.2	0.3	0.5	2.7	4.0	6.6
40-44 years	1.5	0.1	0.2	0.3	1.5	2.2	3.7
45-49 years	1	0.1	0.1	0.2	1.0	1.5	2.5
50-59 years	0.3	0.03	0.04	0.07	0.4	0.6	0.9

From Lakhani SR, Van De Vijver MJ, Jacquamier J, et al. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol2002;20:2310–2318,

BRCA-Related Breast Cancer – distinct features

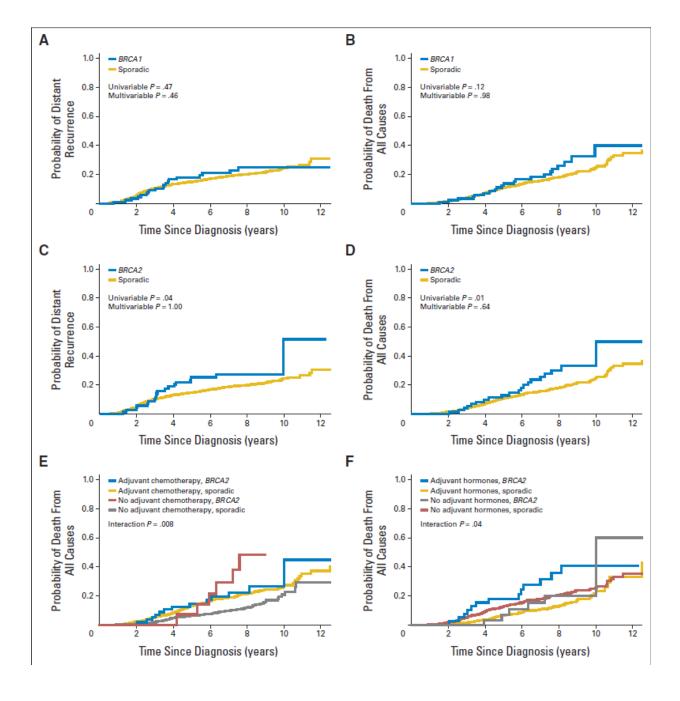
Other features:


High grade	Lymphocytic infiltrate
Mostly invasive ductal carcinoma	TP53 mutations
Medullary carcinoma	Basal phenotype
Pushing margins	EGFR expression
DCIS less common	C-myc amplified

Bilaterality

Prognosis in BRCA1/2+ Breast Cancer

Is Prognosis different in BRCA1/2 Breast Cancer?


- Local disease
- Greater incidence of ipsilateral disease
- Greater incidence of contra-lateral breast cancer –
 10yr rate of 26% vs 3% in non-carriers (Pierce et al JCO 2006)

Pierce et al, JCO, 2006

Is Prognosis different in BRCA1/2 Breast Cancer?

- Systemic relapse
- Most studies report no difference in OS or breast cancer specific survival compared to non-carriers, especially if standard systemic therapy received
- Rennert et al, NEJM, 2007
- Goodwin et al, JCO 2012
- Huzarski et el, JCO, 2013

Goodwin et al, JCO 2012

IMPACT OF A BRCA1/2 MUTATION ON TREATMENT DECISIONS

Impact of a BRCA1/2 mutation on treatment decisions

- Local management
- Lumpectomy vs mastectomy
- Bilateral mastectomy?
- Systemic therapy
- No EBM to change adjuvant chemotherapy
- Evidence to support use of DNA cross-linking agents & alkylating agents:
- Platinum agents, Mitomycin
- CMF (Cyclophosphamide/MTX/5FU)
- Reproductive considerations
- Ongoing follow-up

LOCAL THERAPY CONSIDERATIONS

BCS vs Mastectomy

- BCS is a legitimate and safe choice
- Therapeutic radiation is safe:
- Reduces local ipsilateral recurrence
- Does not increase contra-lateral disease
- Contralateral mastectomy some studies suggest that there may be a long term survival benefit
- Decision must be tailored to individual's needs

Does CRRM improve survival?

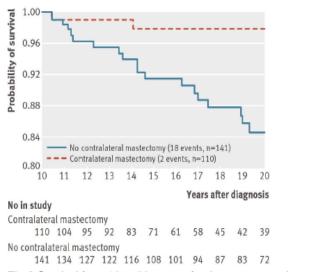


Fig 2 Survival from 10 to 20 years after breast cancer, by contralateral mastectomy

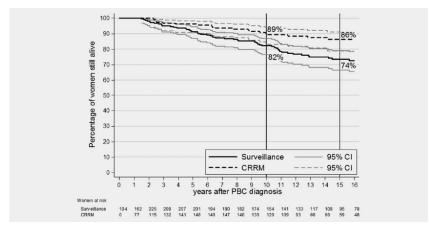
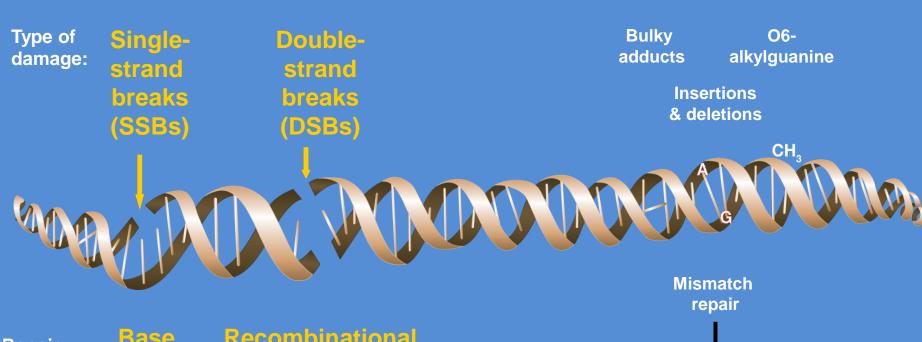
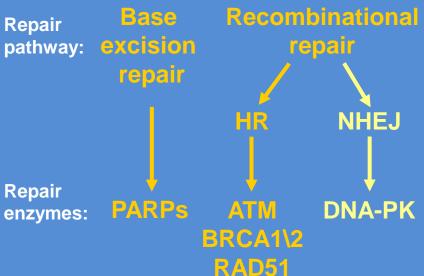


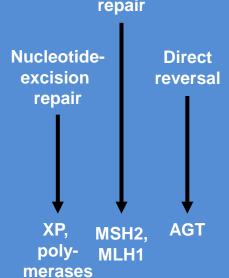
Figure 2. Unadjusted overall survival curves for BRCA1/2-associated breast cancer patients (including patients who deceased or had distant netastases within 2 years after primary breast cancer (PBC) diagnosis) opting for contralateral risk-reducing mastectomy (CRRM) versus not ppting for risk-reducing mastectomy (Surveillance), using the Simon and Makuch method—which takes into account the change in an individual's covariate status over time—with years after PBC diagnosis as the time variable.

Stage 1 & 2 at Dx

Most were <50 at Dx

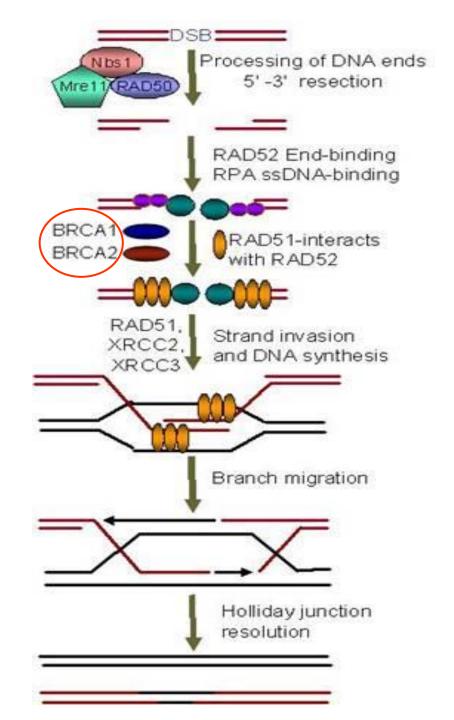

Metcalfe, BMJ, 2014


Greatest benefit in <40 & low risk/favorable features


Heemskerk-Gerritsen, Int J Cancer, 2015

SYSTEMIC THERAPIES IN BRCA1/2+ BREAST CANCER

Types of DNA damage and repair



Homologous recombination repair pathway:

- important for repairing replication lesions
- depends on the RAD51family of proteins
- makes use of a homologous DNA sequence.
- BRCA1/2 play a key role in this repair pathway

Chemotherapy

Chemotherapy in BRCA1/2+ Breast Cancer

- Pre-clinical studies suggest increased sensitivity to agents that damage DNA in a way that interferes with DNA replication forks & which subsequently require DNA repair by HR:
- DNA cross-linking agents (carboplatin, cisplatin, mitomycin)
- Growing body of clinical evidence to support this

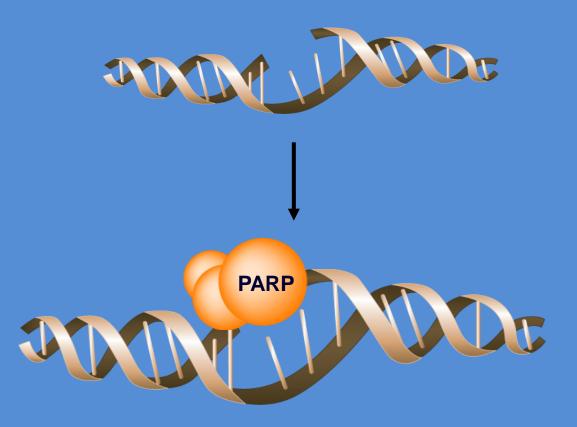
Chemotherapy – platinum agents

- Growing number of prospective clinical trials supporting:
- Incorporation of platinum agents in neoadjuvant triple-negative BRCA+ breast cancer
- Phase III study (TNT study) in the metastatic setting favoring caboplatin over docetaxel in triple negative BRCA+ MBC

PARP Inhibitors

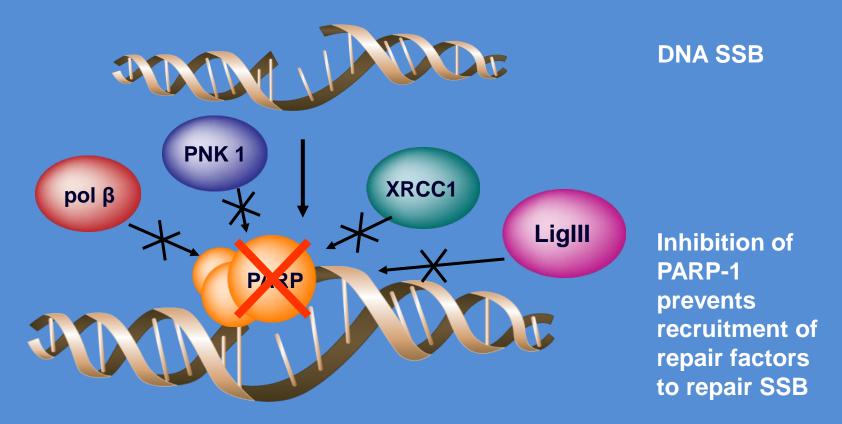
The PARP Superfamily

PARP consists of a family of proteins which has multiple members (18) involved in diverse functions including:

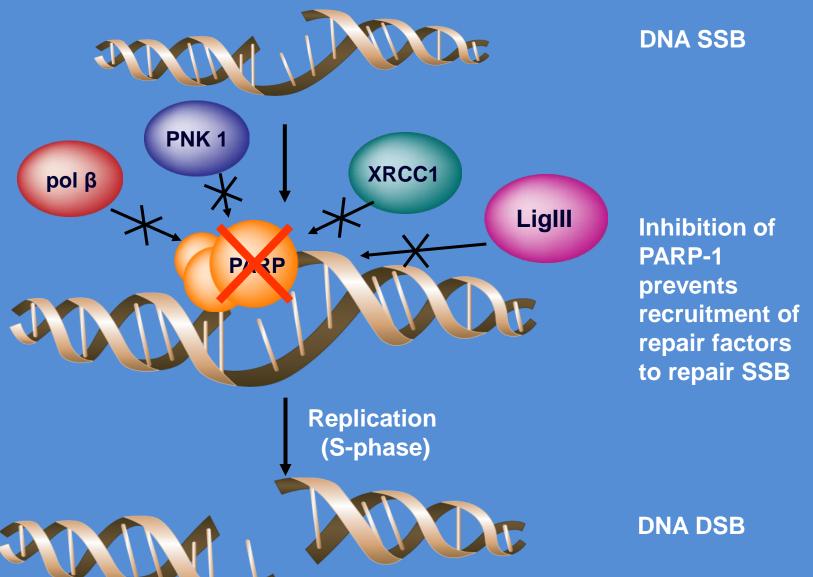

- DNA repair
- telomere maintenance
- epigenetic regulation
- centrosomer function

PARP-1 is a key enzyme involved in the repair of single-strand DNA breaks

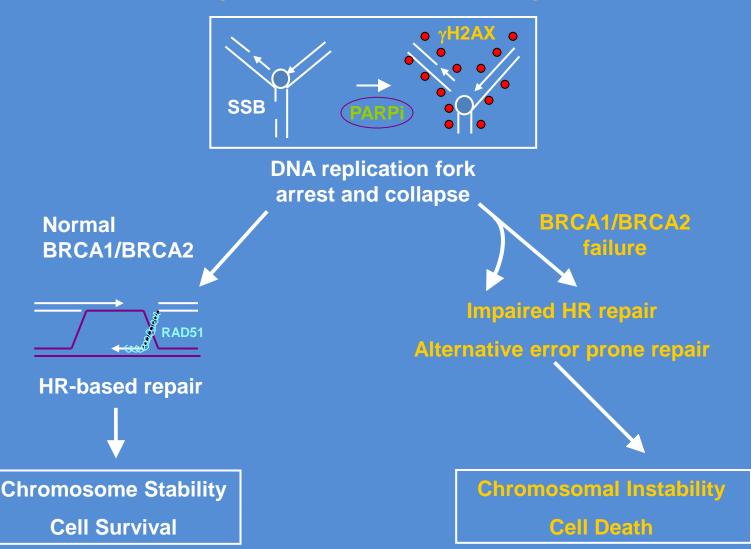
- A key role in the repair of DNA single-strand breaks
- Uses the base excision repair pathway
- Binds directly to sites of DNA damage
- Once activated, it uses NAD as a substrate and generates large, branched chains of poly(ADP-ribose) polymers on multiple target proteins
- Recruits other DNA repair enzymes



Inhibiting PARP-1 increases double-strand DNA damage



DNA SSB


Inhibiting PARP-1 increases double-strand DNA damage

Inhibiting PARP-1 increases double-strand DNA damage

PARP inhibition and tumor-selective synthetic lethality

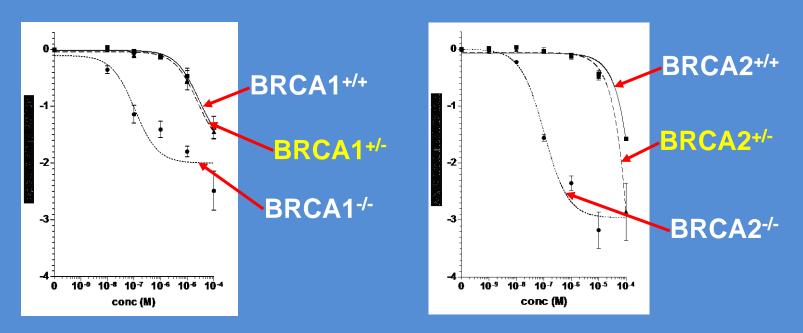
Main parachute

Reserve Parachute

PARP inhibitor

Main parachute

BRCA mutation



Reserve Parachute

Death of the cancer cell

Increased sensitivity of BRCA1-/- and BRCA2-/cells to PARP inhibition

No difference in sensitivity between heterozygous and wild-type BRCA cells

Targeted inhibition → selective and less toxic therapy

Phase II, proof-of-concept - Olaparib study, refractory BRCA1/2+ MBC

ITT cohort	Olaparib 400 mg bid (n=27)	Olaparib 100 mg bid (n=27)
Overall Response Rate, n (%)	11 (41)*	6 (22)*
Complete Response, n (%)	1 (4)	0
Partial Response, n (%)	10 (37)	6 (22)

Tutt et al, Lancet, 2010

^{*}An additional 1 patient in the 400 mg cohort and 3 patients in the 100 mg cohort had unconfirmed responses

Olaparib Monotherapy in Patients With Advanced Cancer and Germline *BRCA1/2* Mutation

- open-label non-comparative trial
- assessing efficacy of olaparib monotherapy (400 mg bid) against *BRCA1/2* mutant tumors "basket study"
- Tumor types included ovarian, breast cancer, prostate cancer and pancreatic cancer
- All patients were heavily pretreated
- 298 patients, responses across all tumor type, ORR was 26.2%

Olaparib for advanced cancer – study 42

	Tumour type					
Response status, n (%)	Ovarian (n=193)	Breast (n=62)	Pancreas (n=23)	Prostate (n=8)	Other (n=12)	Total (n=298)
Tumour response rate	60 (31.1)	8 (12.9)	5 (21.7)	4 (50.0)	1 (8.3)	78 (26.2)
CR*	6 (3.1)	0	1 (4.3)	0	0	7 (2.3)
PR*	54 (28)	8 (13)	4 (17)	4 (50)	1 (8.3)	71 (23.8)
SD ≥8 weeks	78 (40)	29 (47)	8 (35)	2 (25)	7 (58)	124 (42)
SD	64 (33)	22 (36)	5 (22)	2 (25)	6 (50)	99 (33)
Unconfirmed PR†	12 (6)	7 (11)	3 (13)	0	1 (8.3)	23 (8)
PD‡	41 (21)	23 (37)	9 (39)	2 (25)	3 (25)	78 (26)
RECIST progression	33 (17)	16 (26)	6 (26)	1 (13)	3 (25)	59 (20)
Early death [§]	8 (4)	7 (11)	3 (13)	1 (13)	0	19 (6)
Not evaluable	14 (7)	2 (3)	1 (4)	0	1 (8.3)	18 (6)
No follow-up assessments	12 (6)	2 (3)	1 (4)	0	0	15 (5)
SD <8 weeks	2 (1)	0	0	0	1 (8.3)	3 (1)

80% of ovarian cancer patients - 3+ lines of chemotherapy

PARP inhibition vs chemotherapy

gBRCA1 / BRCA2 Carriers

Advanced anthracycline taxane resistant breast cancer

inhibitor at MTD as continuous exposure

Primary endpoint PFS

Niraparib - BRAVO Trial EORTC / BIG

R

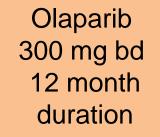
Talazoparib - EMBRACA - NCT01945775

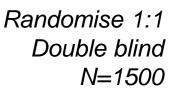
Olaparib - OLYMPIAD NCT02000622

Physician Choice
within SOC options
Capecitabine
or
Vinorelbine
or
Eribulin
or
Gemcitabine

Potent PARP

National Institutes of Health, Available at: https://clinicaltrials.gov/ct2/results?term=NCT01945775 and https://clinicaltrials.gov/ct2/results?term=NCT02000622 . Accessed: September 27, 2015.




Advancing Research. Improving Lives.

Restricted to Germline Mutation carriers

Post <u>adjuvant</u> gBRCA HR+,TNBC T2 or N+

Placebo 12 month duration

Distant DFS; OS

REPRODUCTIVE ISSUES

Reproductive issues

- Timing of RRSO (risk reducing oophorectomy)
- For BRCA1 between 35-40
- For BRCA2 by 40
- Fertility preservation
- PGD pre-implantation genetic diagnosis
- Premature menopause impact on sexual health, bone health, quality of life

Unique challenges in BRCA1/2 associated Breast Cancer

- Multitude of therapeutic decisions and reproductive decisions
- Knowledge of BRCA1/2 status may arrive at a time of great distress
- Risk reducing measures are often an assault on selfimage, "womanhood"
- Far reaching implications for family planning and for the extended family
- Multiple psychosocial issues support is imperative
- Multi-disciplinary care is a MUST

Thank you

Shani.paluch-shimon@sheba.health.gov.il