

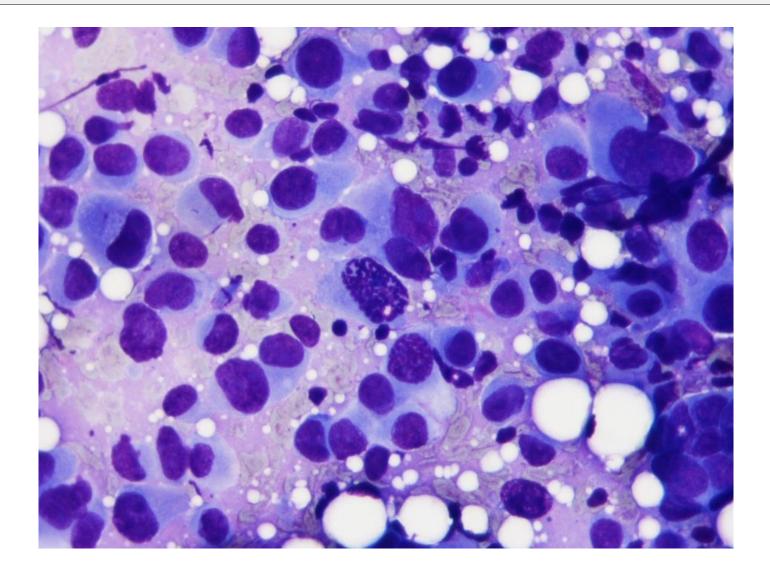

ESMO Preceptorship Programme Breast Cancer Multidisciplinary management, standards of care, therapeutic targets and future perspectives Lisbon, Portugal 16-17 September 2016

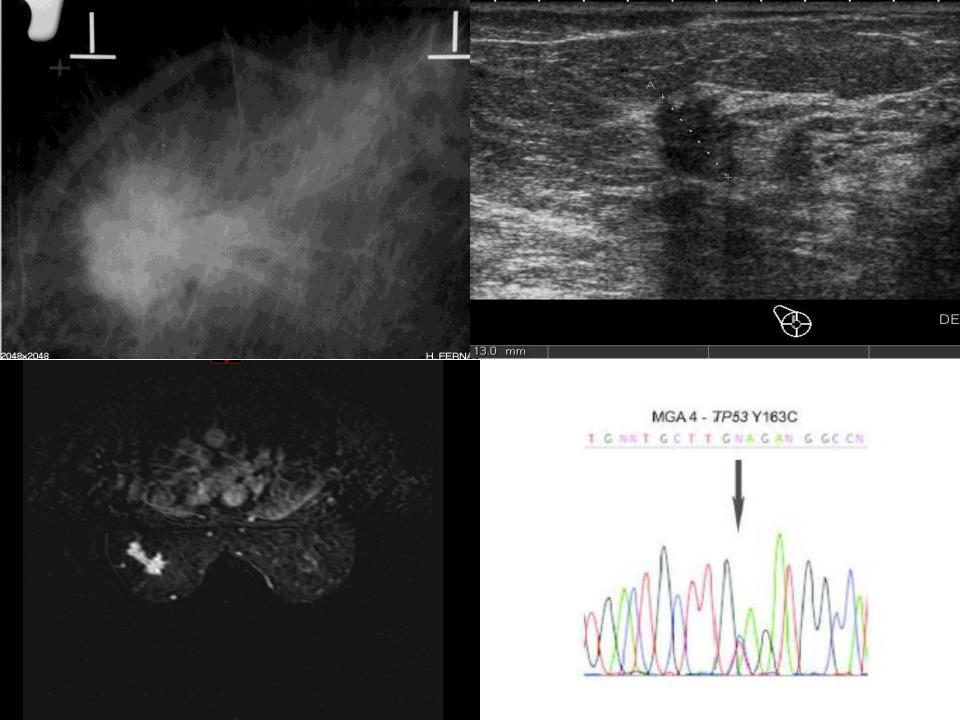


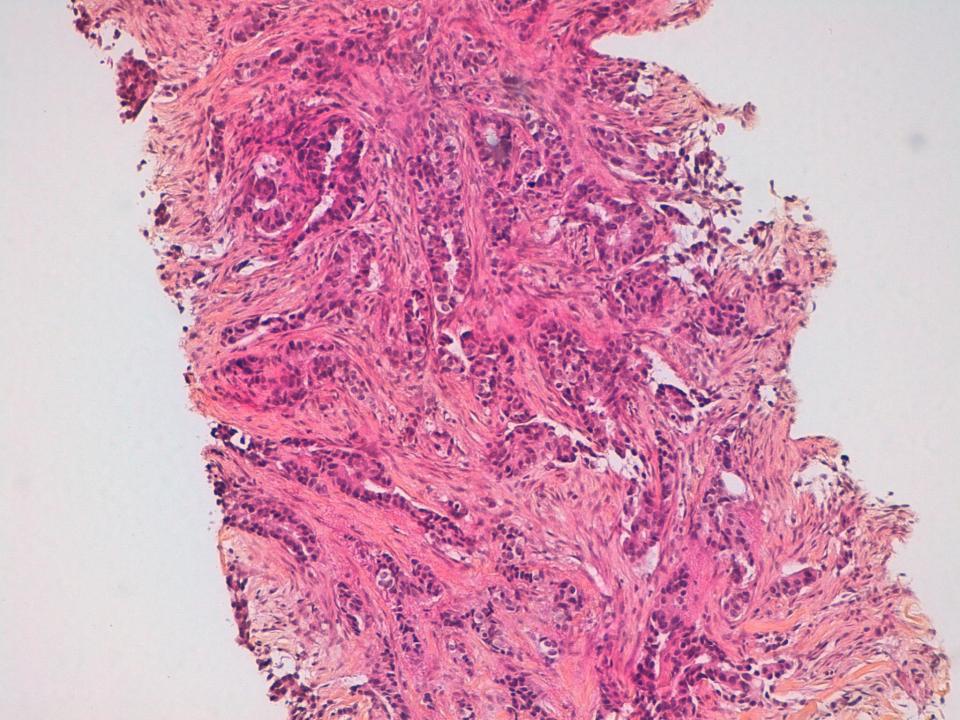
BREAST CANCER CLASSIFICATION: TRADITIONAL PATHOLOGY AND MOLECULAR SUBTYPES

Prof. Fernando Schmitt Director of Department of Pathology and Medicine Laboratoire National de Santé, Luxembourg General-Secretary of the International Academy of Cytology



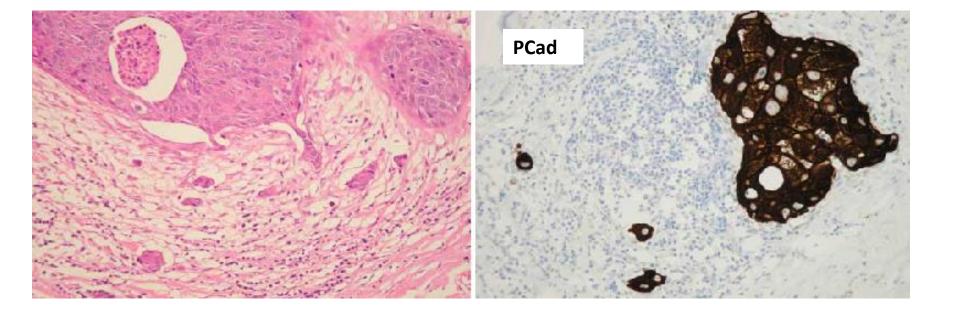

### Why do we need a classification?

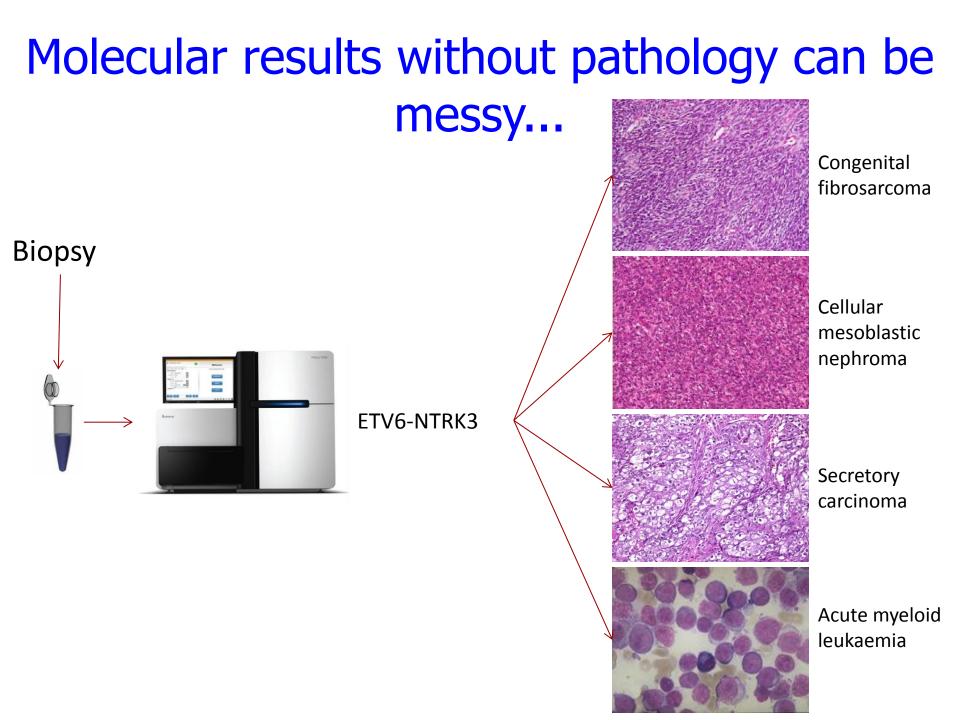

### Aim 1: Diagnosis


### Aim 2: Prognosis

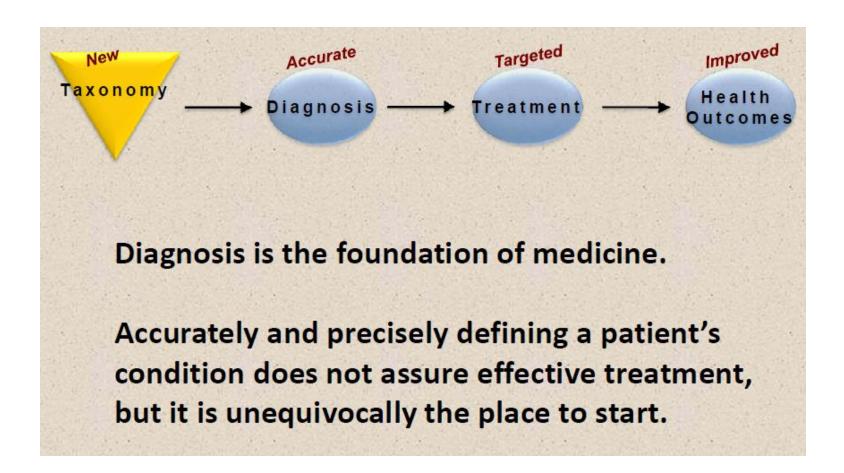
### Aim 3: Prediction

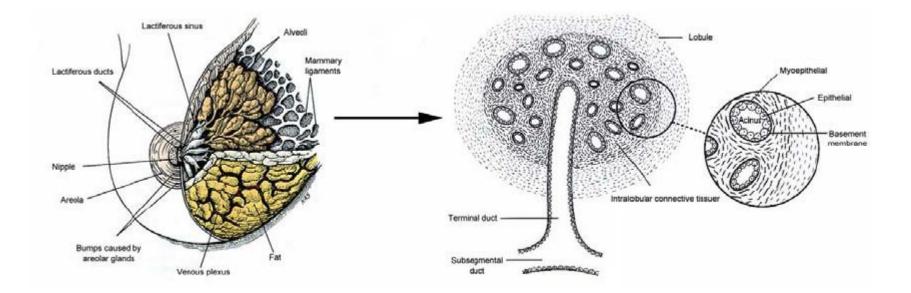
### Breast cancer diagnosis is morphological



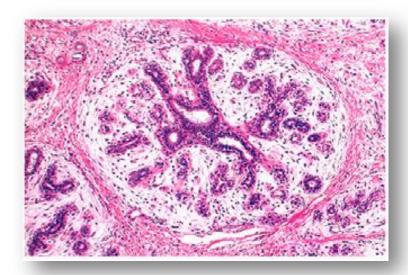





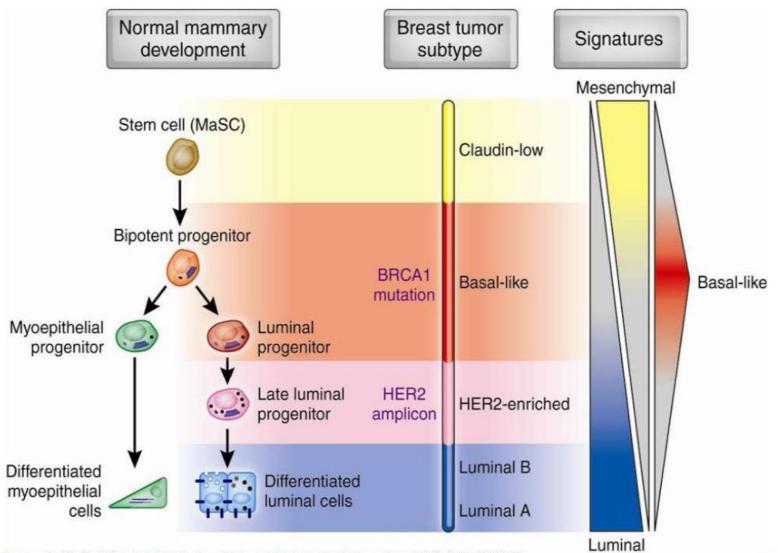


MGA 7 AMGA - 7P53 R175H


## Breast cancer diagnosis is morphological Microinvasion






## **Precision Medicine**

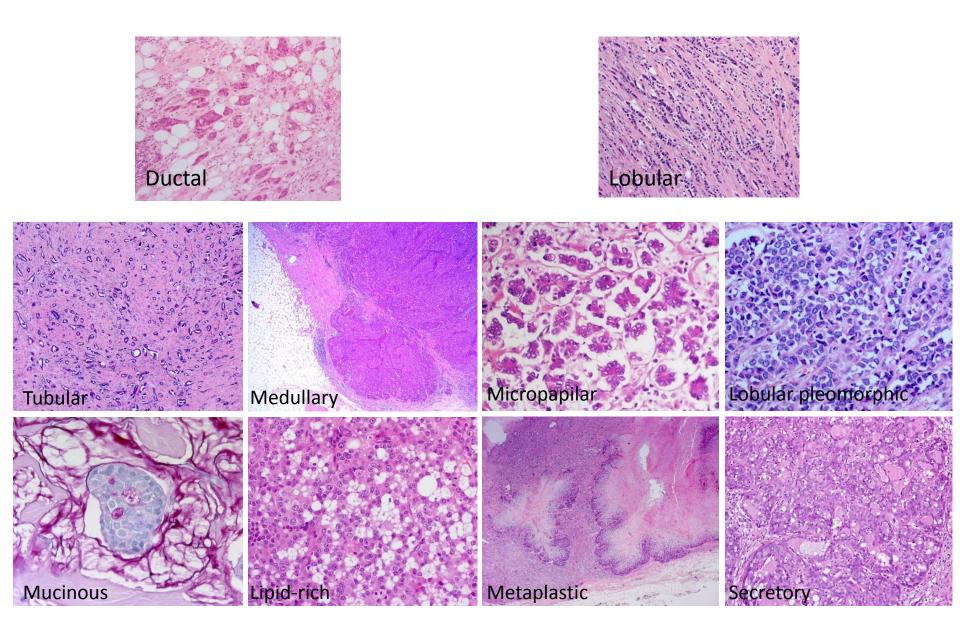









### Putative Model to explain Breast Cancer Molecular Signatures




-

image by Katie Vicari, from Prat and Perou, Nature Medicine, Aug;15(8):842-4 (2009)



### Histological types of breast carcinoma



#### WHO Classification of Tumours of the Breast

Edited by Sunil R. Lakhani, Ian O. Ellis, Stuart J. Schnitt, Puay Hoon Tan, Marc J. van de Vijver

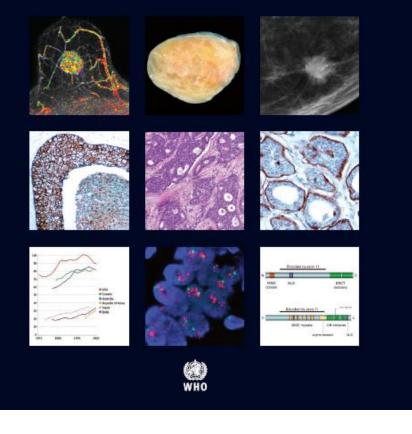
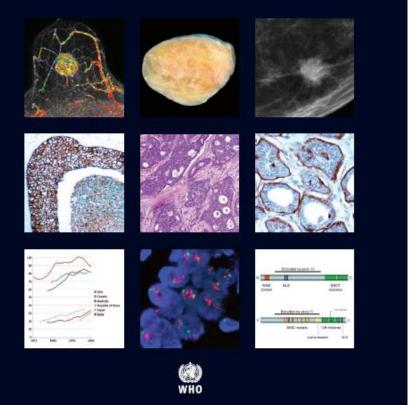
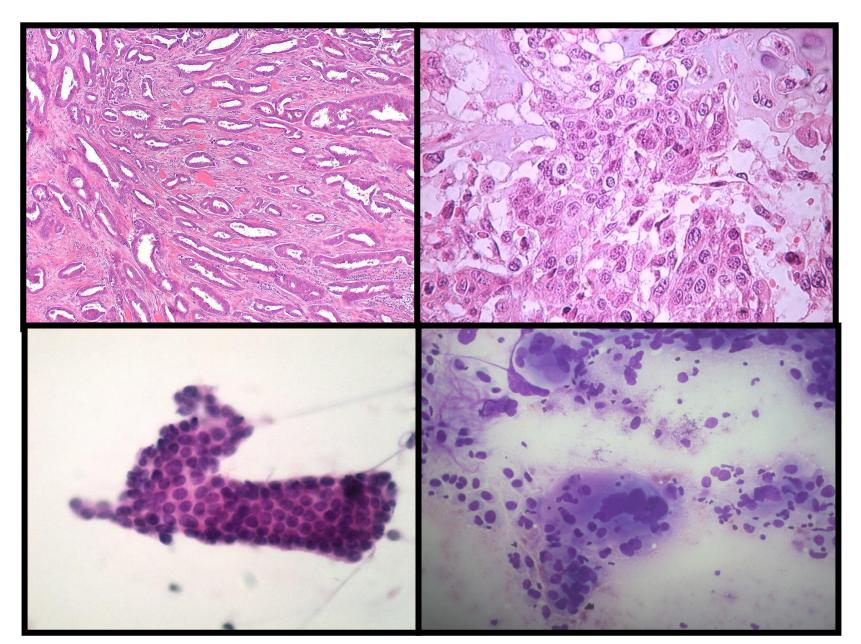
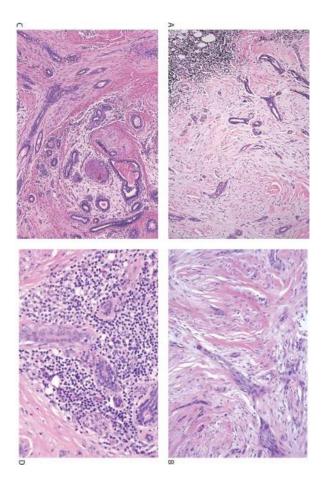



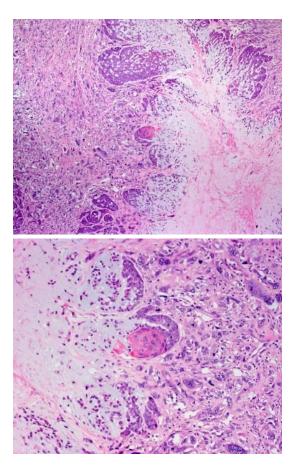

 Table 1. Invasive breast carcinomas (without microinvasive carcinoma and invasive papillary lesions)

| Туре                                                                      | Classification   |
|---------------------------------------------------------------------------|------------------|
| Invasive carcinoma of no special type (NST)                               | 8500/3           |
| Pleomorphic carcinoma                                                     | 8522/3           |
| Carcinoma with osteoclast-like stromal giant cells                        | 8035/3           |
| Carcinoma with choriocarcinomatous features                               |                  |
| Carcinoma with melanotic features                                         |                  |
| Invasive lobular carcinoma                                                | 8520/3           |
| Classic lobular carcinoma                                                 |                  |
| Solid lobular carcinoma                                                   |                  |
| Alveolar lobular carcinoma                                                |                  |
| Pleomorphic lobular carcinoma<br>Tubulolobular carcinoma                  |                  |
| Mixed lobular carcinoma                                                   |                  |
| Tubular carcinoma                                                         | 8211/3           |
| Cribriform carcinoma                                                      | 8201/3           |
| Mucinous carcinoma                                                        | 8480/3           |
| Carcinoma with medullary features                                         |                  |
| Medullary carcinoma                                                       | 8510/3           |
| Atypical medullary carcinoma                                              | 8513/3           |
| Invasive carcinoma NST with medullary features                            | 8500/3           |
| Carcinoma with apocrine differentiation                                   |                  |
| Carcinoma with signet-ring-cell differentiation                           |                  |
| Invasive micropapillary carcinoma                                         | 8507/3           |
| Metaplastic carcinoma of no special type                                  | 8575/3           |
| Low-grade adenosquamous carcinoma                                         | 8570/3           |
| Fibromatosis-like metaplastic carcinoma                                   | 8572/3           |
| Squamous cell carcinoma                                                   | 8070/3           |
| Spindle cell carcinoma                                                    | 8032/3           |
| Metaplastic carcinoma with mesenchymal                                    |                  |
| differentiation                                                           | 0571/0           |
| Chondroid differentiation                                                 | 8571/3           |
| Osseous differentiation                                                   | 8571/3<br>8575/3 |
| Other types of mesenchymal differentiation<br>Mixed metaplastic carcinoma | 8575/3           |
| Myoepithelial carcinoma                                                   | 8982/3           |
| Epithelial-myoepithelial tumors                                           | 090215           |
| Adenomyoepithelioma with carcinoma                                        | 8983/3           |
| Adenoid cystic carcinoma                                                  | 8200/3           |
| Rare types                                                                |                  |
| Carcinoma with neuroendocrine features                                    |                  |
| Neuroendocrine tumor, well-differentiated                                 | 8246/3           |
| Neuroendocrine carcinoma poorly differentiated                            | 8041/3           |
| (small cell carcinoma)                                                    |                  |
| Carcinoma with neuroendocrine differentiation                             | 8574/3           |
| Secretory carcinoma                                                       | 8502/3           |
| Invasive papillary carcinoma                                              | 8503/3           |
| Acinic cell carcinoma                                                     | 8550/3           |
| Mucoepidermoid carcinoma                                                  | 8430/3           |
| Polymorphous carcinoma                                                    | 8525/3           |
| Oncocytic carcinoma                                                       | 8290/3           |
| Lipid-rich carcinoma                                                      | 8314/3           |
| Glycogen-rich clear cell carcinoma                                        | 8315/3           |
| Sebaceous carcinoma                                                       | 8410/3           |

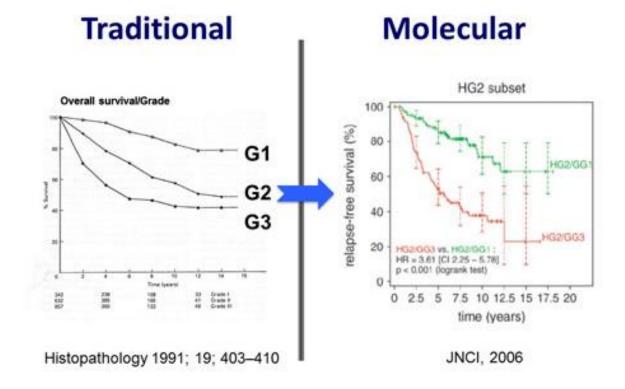

#### WHO Classification of Tumours of the Breast

Edited by Sunil R. Lakhani, Ian O. Ellis, Stuart J. Schnitt, Puay Hoon Tan, Marc J. van de Vijver



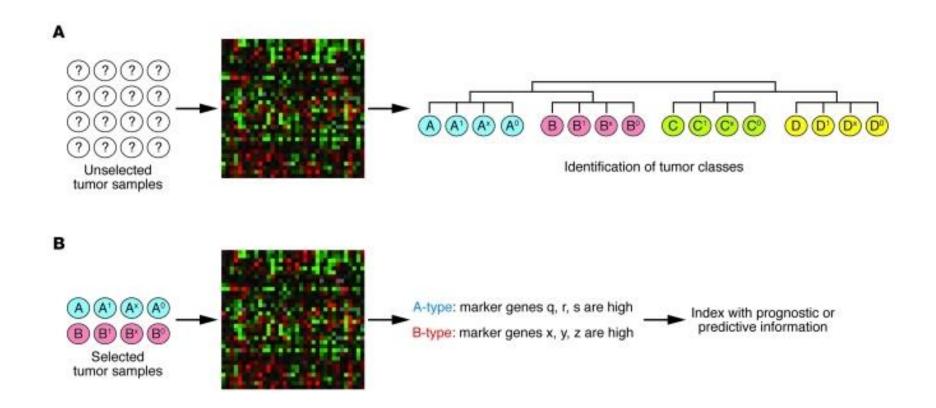


| Туре                                                   | Classification |
|--------------------------------------------------------|----------------|
| Precursor lesions                                      |                |
| Ductal carcinoma in situ                               | 8500/2         |
| Lobular neoplasia                                      |                |
| Lobular carcinoma in situ                              |                |
| Classic lobular carcinoma in situ                      | 8520/2         |
| Pleomorphic lobular carcinoma in situ                  | 8519/2*        |
| Atypical lobular hyperplasia                           |                |
| Intraductal proliferative lesions                      |                |
| Usual ductal hyperplasia                               |                |
| Columnar cell lesions including flat epithelial atypia |                |
| Atypical ductal hyperplasia                            |                |
| Papillary lesions                                      |                |
| Intraductal papilloma                                  | 8503/0         |
| Intraductal papilloma with atypical hyperplasia        | 8503/0         |
| Intraductal papilloma with ductal carcinoma            | 8503/2*        |
| in situ                                                |                |
| Intraductal papilloma with lobular carcinoma           | 8520/2         |
| in situ                                                |                |
| Intraductal papillary carcinoma                        | 8503/2         |
| Encapsulated papillary carcinoma                       | 8504/2         |
| Encapsulated papillary carcinoma with invasion         | 8504/3         |
| Solid papillary carcinoma                              |                |
| In situ                                                | 8509/2         |
| Invasive                                               | 8509/3         |

### Breast cancer classification and prognosis




### Breast cancer classification and prognosis

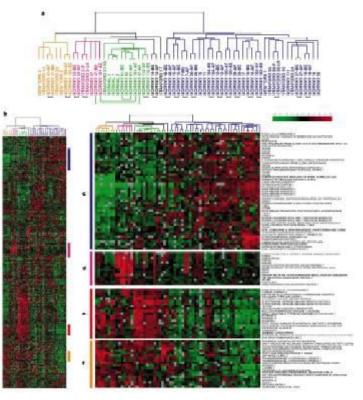





### Breast cancer classification and prognosis



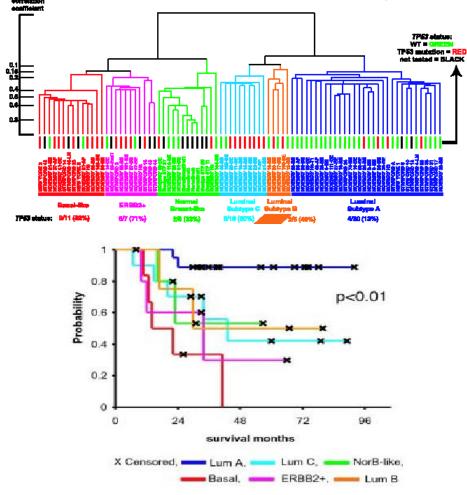
Oncotype DX and PAM 50 approximately split this group in half when classified as low risk RS (56%) and Luminal A (63%) approximately.


### Gene-expression profiling (microarray-based)



#### letters to nature

#### Molecular portraits of human breast tumours


Charles M. Perou\*†, Therese Sørlie†‡, Michael B. Eisen\*, Matt van de Rijn§, Stefanie S. Jeffrey||, Christian A. Rees\*, Jonathan R. Pollack§, Douglas T. Ross§, Hilde Johnsen‡, Lars A. Akslen#, Øystein Fluge☆, Alexander Pergamenschikov\*, Cheryl Williams\*, Shirley X. Zhu§, Per E. Lønning\*\*, Anne-Lise Børresen-Dale‡, Patrick O. Brown§†† & David Botstein\*



## Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications

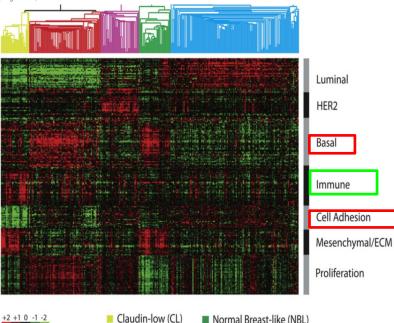
Therese Sørlie<sup>a,b,c</sup>, Charles M. Perou<sup>a,d</sup>, Robert Tibshirani<sup>e</sup>, Turid Aas<sup>f</sup>, Stephanie Geisler<sup>g</sup>, Hilde Johnsen<sup>b</sup>, Trevor Hastie<sup>e</sup>, Michael B. Eisen<sup>h</sup>, Matt van de Rijn<sup>i</sup>, Stefanie S. Jeffrey<sup>j</sup>, Thor Thorsen<sup>k</sup>, Hanne Quist<sup>l</sup>, John C. Matese<sup>c</sup>, Patrick O. Brown<sup>m</sup>, David Botstein<sup>c</sup>, Per Eystein Lønning<sup>g</sup>, and Anne-Lise Borresen-Dale<sup>b,n</sup>

#### 78 carcinomas, 3 fibroadenomas and 4 normal breast samples



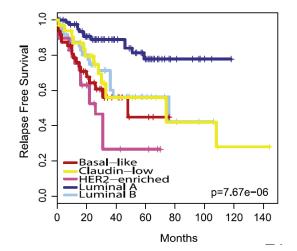
### **Molecular Classification of Breast Cancer**

Prat et al. Breast Cancer Research 2010, 12:R68 http://breast-cancer-research.com/content/12/5/R68

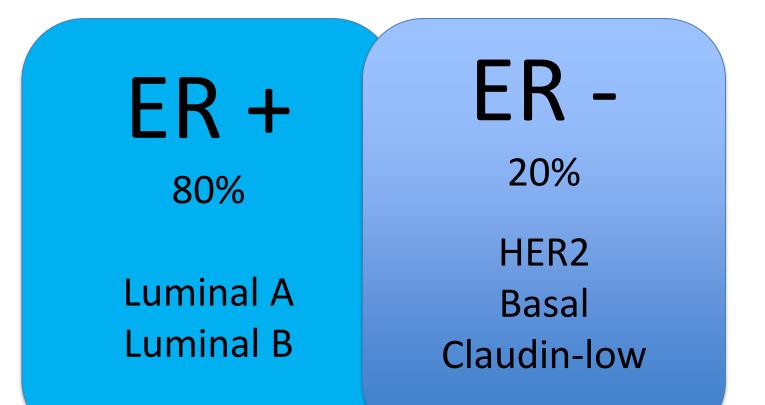



#### **RESEARCH ARTICLE**

#### Open Access


### Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer

Aleix Prat<sup>1,2,3</sup>, Joel S Parker<sup>1,2†</sup>, Olga Karginova<sup>1,2,3†</sup>, Cheng Fan<sup>1</sup>, Chad Livasy<sup>1,3</sup>, Jason I Herschkowitz<sup>4</sup>, Xiaping He<sup>1,2,3</sup>, Charles M Perou<sup>1,2,3\*</sup>



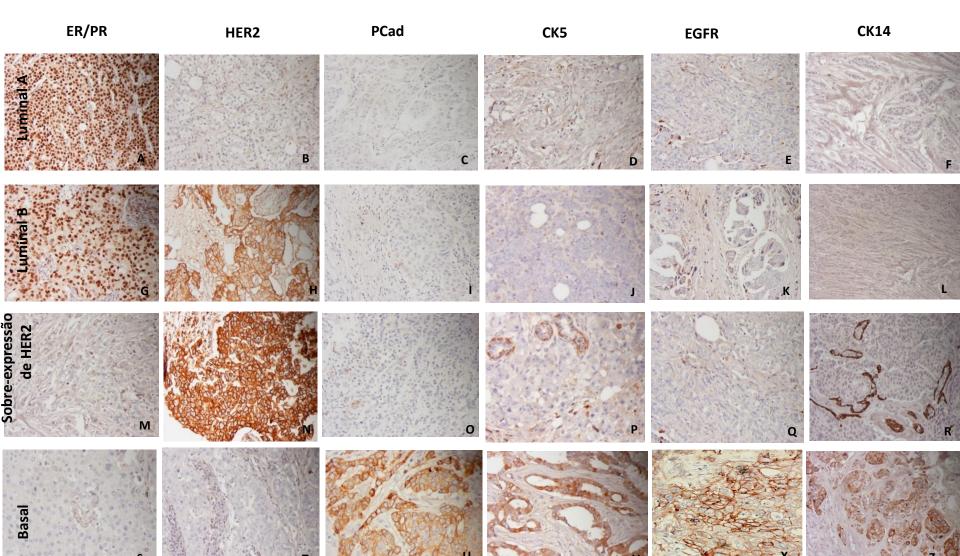

Claudin-low (CL)
 Normal Breast-like (NBL)
 Basal-like (BL)
 Luminal A and B (LA and LB)
 HER2-enriched (H2)

LUMINAL A: ER+/PgR+/HER2-LUMINAL B: ER+/PgR+/HER2+and or Ki67+ HER-OE: ER-/PgR-/HER2+ BASAL-LIKE:ER-/PgR-/HER2-/Basal Markers CLAUDIN-LOW:ER-/Pg-/HER2-/Claudin<sup>low</sup>



## Molecular Classification of Breast Cancer

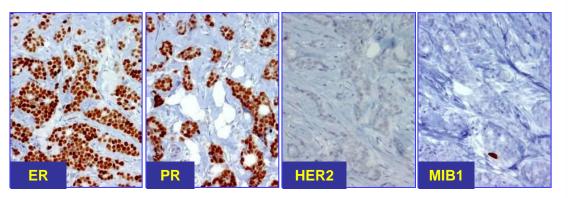


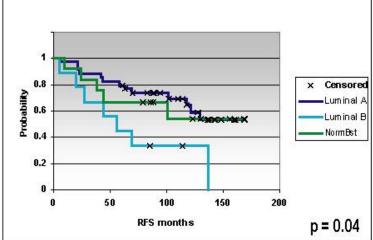

Virchows Arch (2005) 447: 688-694 DOI 10.1007/s00428-005-0010-7

#### ORIGINAL ARTICLE

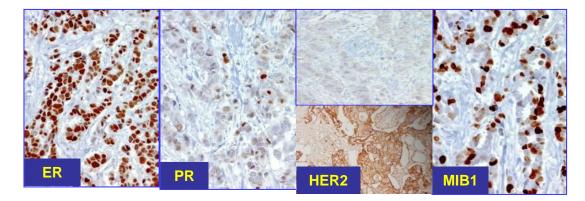
Irina Matos · Rozany Dufloth · Marcelo Alvarenga · Luiz Carlos Zeferino · Fernando Schmitt

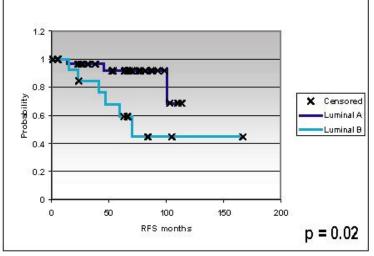
p63, cytokeratin 5, and P-cadherin: three molecular markers to distinguish basal phenotype in breast carcinomas


### IHC TRANSLATION OF MOLECULAR CLASSIFICATION

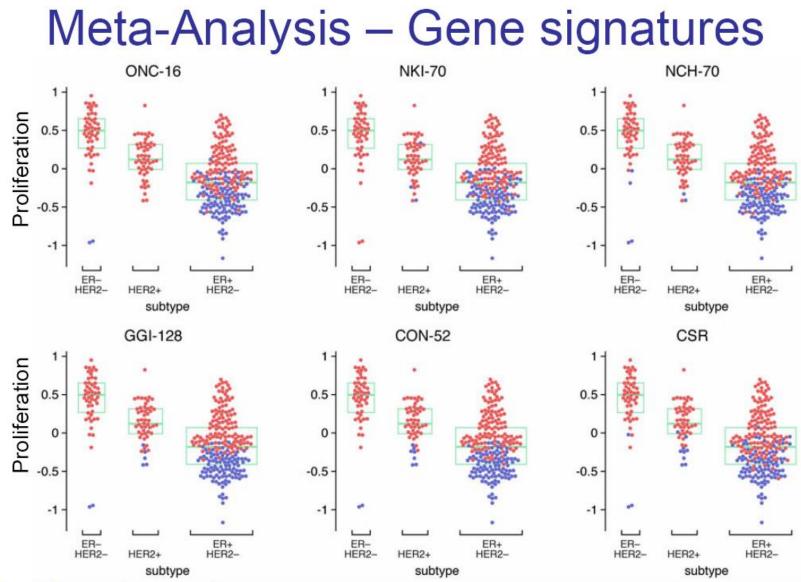



### **ER Positive Breast Cancer**


60 Sample ER+ Tamoxifen-Treated Test Set Ma et al., Cancer Cell 5, 1-10 (2004).


#### **Luminal A**






#### **Luminal B**

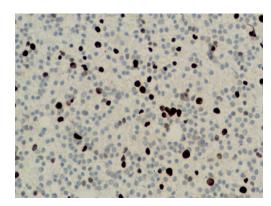


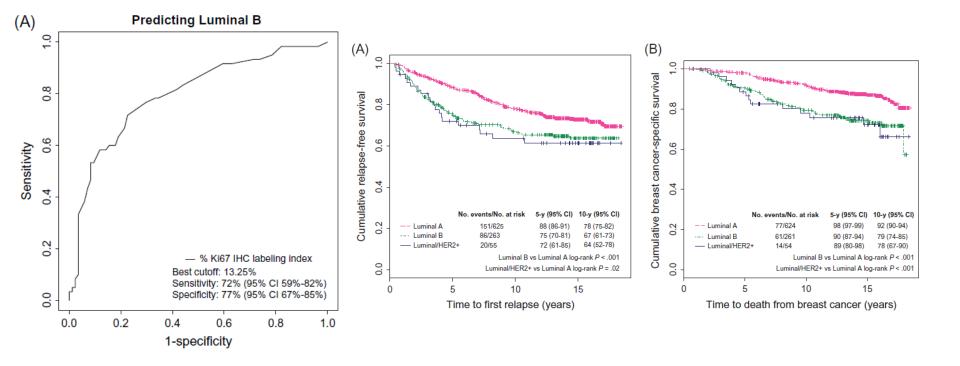


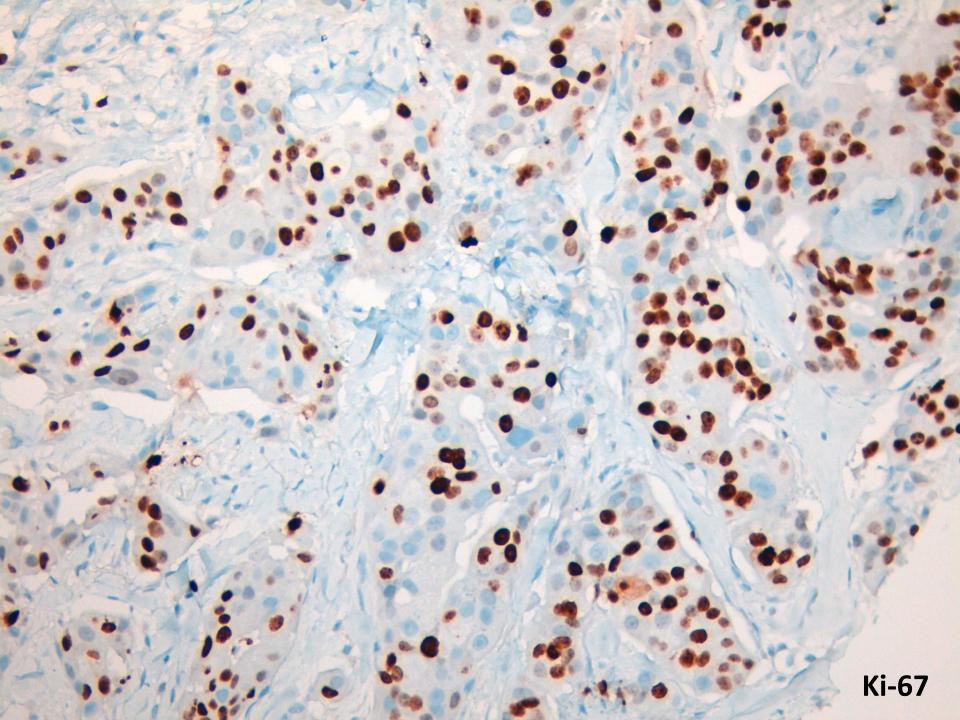
45 Tamoxifen Treated Test Set #2 Chang et al., PNAS 102, 3738-43 (2005) + UNC



Blue dots: good prognosis Red dots: poor prognosis

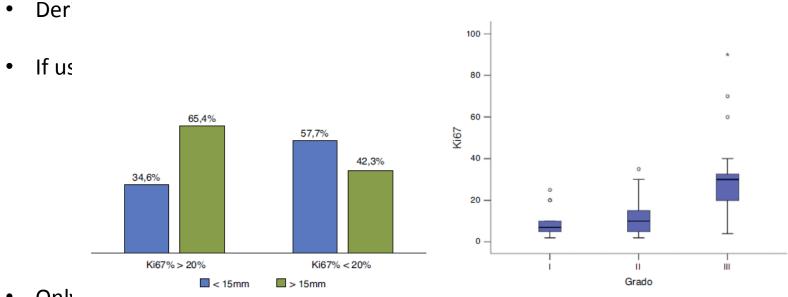

Wirapati et al. Breast Cancer Res 2008;10:R65


| Intrinsic subtype     | Clinico-pathologic surrogate definition                                                                                                                                                                                                                                                             | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Luminal A             | <b>'Luminal A-like'</b><br><i>all of:</i><br>ER and PgR positive<br>HER2 negative<br>Ki-67 'low' <sup>a</sup><br>Recurrence risk 'low' based on<br>multi-gene-expression assay (if available) <sup>b</sup>                                                                                          | The cut-point between 'high' and 'low' values for Ki-67 varies between<br>laboratories. <sup>a</sup> A level of <14% best correlated with the gene-expression<br>definition of Luminal A based on the results in a single reference<br>laboratory [23]. Similarly, the added value of PgR in distinguishing<br>between 'Luminal A-like' and 'Luminal B-like' subtypes derives from the<br>work of Prat et al. which used a PgR cut-point of ≥20% to best<br>correspond to Luminal A subtype [24]. Quality assurance programmes<br>are essential for laboratories reporting these results. |
| Luminal B             | <ul> <li>'Luminal B-like (HER2 negative)'</li> <li>ER positive</li> <li>HER2 negative</li> <li>and <i>at least one of:</i></li> <li>Ki-67 'high'</li> <li>PgR 'negative or low'</li> <li>Recurrence risk 'high' based on</li> <li>multi-gene-expression assay (if available)<sup>b</sup></li> </ul> | 'Luminal B-like' disease comprises those luminal cases which lack the<br>characteristics noted above for 'Luminal A-like' disease. Thus, either a<br>high Ki-67 <sup>a</sup> value or a low PgR value (see above) may be used to<br>distinguish between 'Luminal A-like' and 'Luminal B-like (HER2<br>negative)'.                                                                                                                                                                                                                                                                         |
|                       | <b>'Luminal B-like (HER2 positive)'</b><br>ER positive<br>HER2 over-expressed or amplified<br>Any Ki-67<br>Any PgR                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Erb-B2 overexpression | <b>'HER2 positive (non-luminal)'</b><br>HER2 over-expressed or amplified<br>ER and PgR absent                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 'Basal-like'          | <b>'Triple negative (ductal)'</b><br>ER and PgR absent<br>HER2 negative                                                                                                                                                                                                                             | There is an 80% overlap between 'triple-negative' and intrinsic 'basal-like'<br>subtype. Some cases with low-positive ER staining may cluster with non-<br>luminal subtypes on gene-expression analysis. 'Triple negative' also<br>includes some special histological types such as adenoid cystic<br>carcinoma.                                                                                                                                                                                                                                                                          |


#### Ki67 Index, HER2 Status, and Prognosis of Patients With Luminal B Breast Cancer

Maggie C. U. Cheang, Stephen K. Chia, David Voduc, Dongxia Gao, Samuel Leung, Jacqueline Snider, Mark Watson, Sherri Davies, Philip S. Bernard, Joel S. Parker, Charles M. Perou, Matthew J. Ellis, Torsten O. Nielsen

J Natl Cancer Inst 2009;101:736–750








### St Gallen Conference 2015

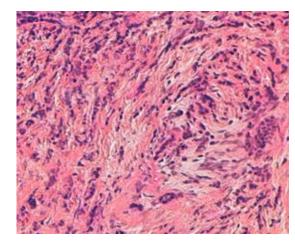
#### Distinction between Luminal A-like and Luminal B-like (HER2 neg) can be:

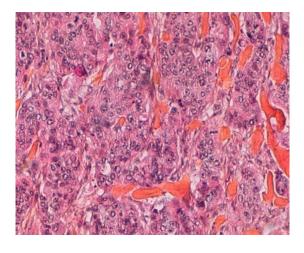


- Only appropriately determined by multi-gene classifiers: NO 00.770
- Subtype need not be determined since it can be replaced by risk socres derived from multi-gene tests: No 59.5%

## Digital image analysis outperforms manual biomarker assessment in breast cancer

Contrast Contrast


Gustav Stålhammar<sup>1,2</sup>, Nelson Fuentes Martinez<sup>1,3</sup>, Michael Lippert<sup>4</sup>, Nicholas P Tobin<sup>5</sup>, Ida Mølholm<sup>4,6</sup>, Lorand Kis<sup>7</sup>, Gustaf Rosin<sup>1</sup>, Mattias Rantalainen<sup>8</sup>, Lars Pedersen<sup>4</sup>, Jonas Bergh<sup>1,5,9</sup>, Michael Grunkin<sup>4</sup> and Johan Hartman<sup>1,5,7</sup>


|            | Ki67 scoring method                                                               | Sensitivity for PAM50 Luminal B vs A | Specificity for PAM50 Luminal B vs A |
|------------|-----------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|
|            | DIA invasive margin<br>Cutoff $\geq 20\%$<br>Cutoff $\geq 20.2\%*$                | 84 %<br>82 %                         | 78%<br>79%                           |
|            | DIA hot spot<br>Cutoff $\geq$ 20%<br>Cutoff $\geq$ 25.2% *                        | 90 %<br>86 %                         | 65 %<br>77 %                         |
| 28.40 4.50 | DIA average<br>Cutoff $\geq$ 20%<br>Cutoff $\geq$ 15.5% *                         | 60 %<br>80 %                         | 90 %<br>83 %                         |
|            | $\begin{array}{l} Manual \\ Cutoff \geq 20\% \\ Cutoff \geq 22.5\% * \end{array}$ | 75 %<br>74 %                         | 70%<br>75%                           |
|            |                                                                                   |                                      |                                      |

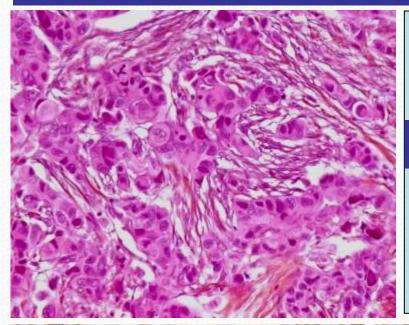
# Do we still need a morphological classification?

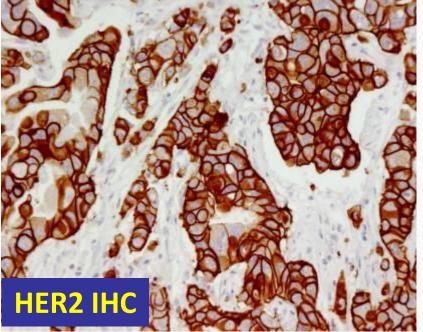
### "ER-positive" breast carcinomas

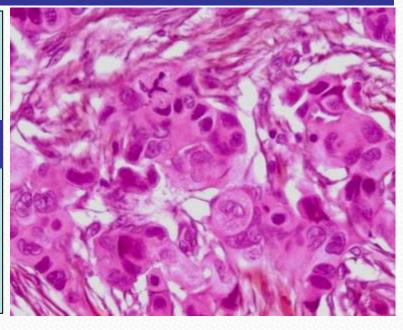


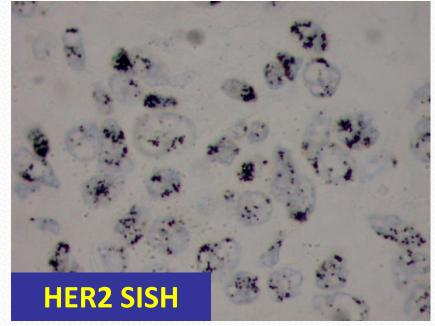


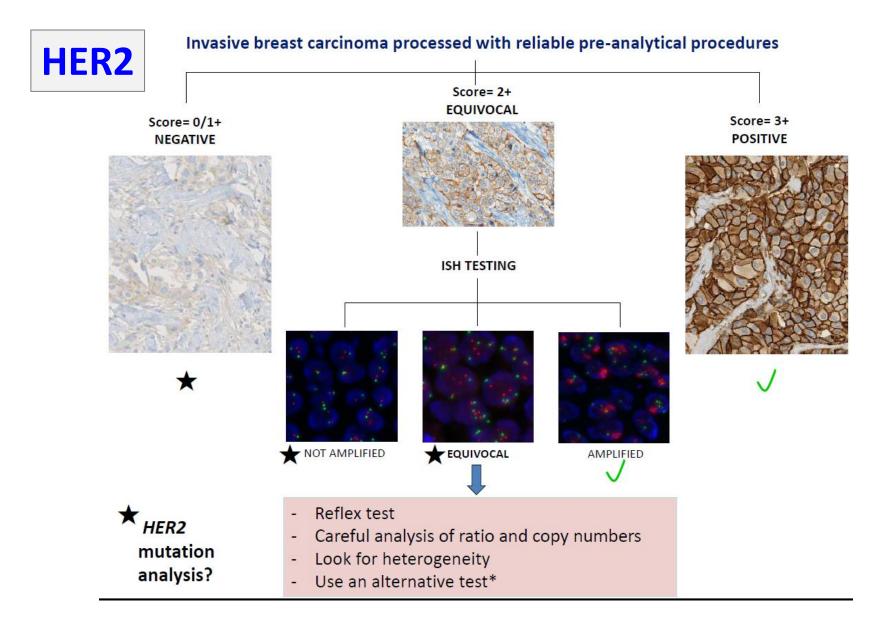



Tubular carcinoma

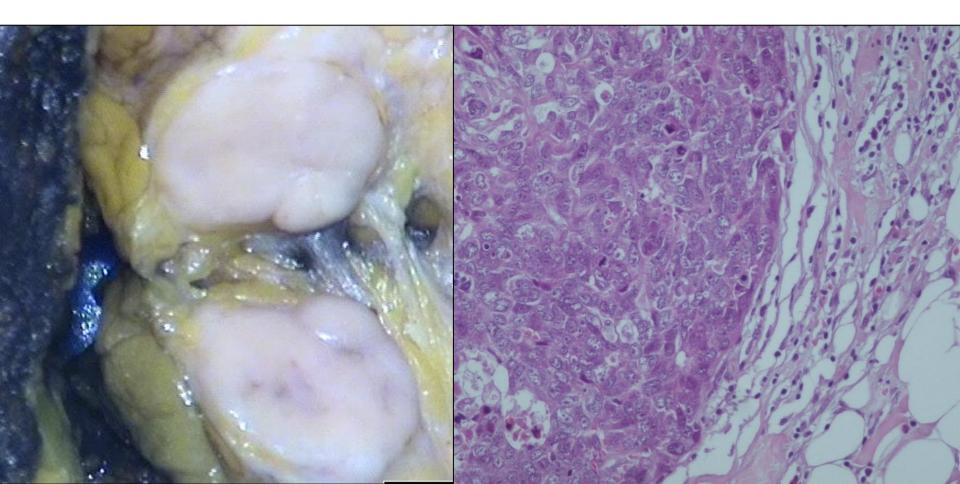

Lobular carcinoma


IDC Grade III


#### **HER 2- OE BREAST CANCER**


HER 2 +





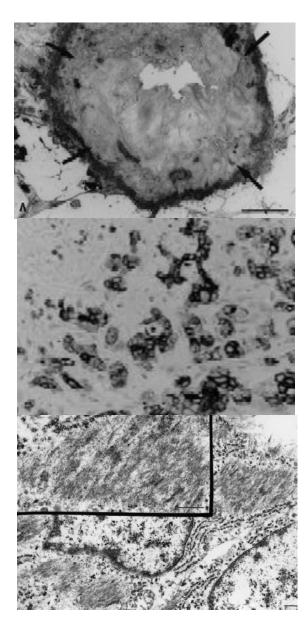






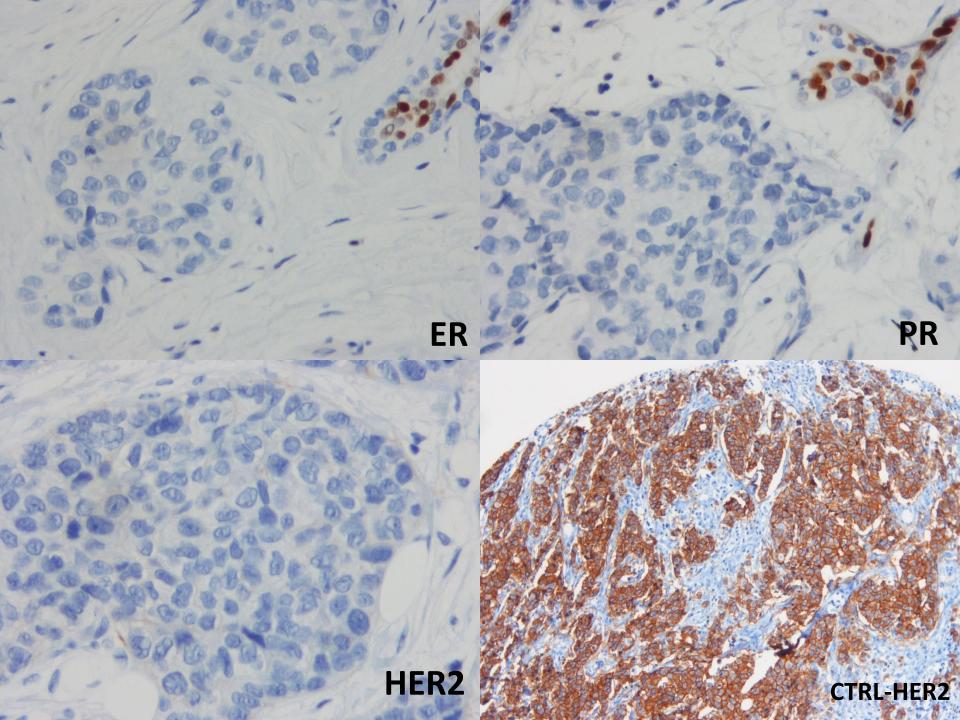

### 




#### Large, Central Acellular Zones Indicating Myoepithelial Tumor Differentiation in High-Grade Invasive Ductal Carcinomas as Markers of Predisposition to Lung and Brain Metastases

Hitoshi Tsuda, м.D., Teruko Takarabe, с.т., Fumio Hasegawa, м.т., Takashi Fukutomi, м.D., and Setsuo Hirohashi, м.D.

| TABLE 3. | Effect on | patient pro  | ognosis an | d preferential | metastasis    | sites of IDCs |
|----------|-----------|--------------|------------|----------------|---------------|---------------|
| with I   | arge cent | ral acellula | r zones by | Cox's univa    | riate analysi | s model       |


|                                             | No. of tumors<br>with metastasis<br>(%) | Risk<br>ratio | 95%<br>confidence<br>interval | p value* |
|---------------------------------------------|-----------------------------------------|---------------|-------------------------------|----------|
| A. Metastasis                               |                                         |               |                               |          |
| <ol> <li>Metastasis to any organ</li> </ol> |                                         |               |                               |          |
| Cases (n = 20)                              | 13 (65)                                 | 2.74          | 1.28-5.86                     | 0.0096   |
| Control subjects (n = 40)                   | 14 (35)                                 |               |                               |          |
| <ol><li>Brain metastasis</li></ol>          |                                         |               |                               | $\frown$ |
| Cases (n = 20)                              | 6 (30)                                  | 3.77          | 1.14-12.45                    | 0.030    |
| Control subjects (n = 40)                   | 5 (13)                                  |               |                               | $\smile$ |
| <ol><li>Lung metastasis</li></ol>           |                                         |               |                               | $\frown$ |
| Cases (n = 20)                              | 9 (45)                                  | 3.67          | 1.40-9.61                     | 0.008    |
| Control subjects (n = 40)                   | 8 (20)                                  |               |                               | $\smile$ |
| 4. Bone metastasis                          |                                         |               |                               |          |
| Cases (n = 20)                              | 4 (20)                                  | 1.18          | 0.36-3.86                     | NS       |
| Control subjects (n = 40)                   | 5 (13)                                  |               |                               |          |
| 5. Locoregional recurrence                  | - ( )                                   |               |                               |          |
| Cases (n = 20)                              | 4 (20)                                  | 1.41          | 0.42-4.74                     | NS       |
| Control subjects (n = 40)                   | 8 (20)                                  |               |                               |          |
| 6. Liver metastasis                         | - (1)                                   |               |                               |          |
| Cases (n = 20)                              | 1 (5)                                   | 0.78          | 0.087-7.08                    | NS       |
| Control subjects (n = 40)                   | 4 (10)                                  | 0.70          | 0.000 1100                    |          |
| B. Death by cancer                          | . (,                                    |               |                               | $\frown$ |
| Cases (n = 20)                              | 10 (50)                                 | 3.78          | 1.48-9.63                     | 0.0054   |
| Control subjects (n = 40)                   | 8 (20)                                  | 0.70          | 1.10-0.00                     | 0.0004   |

IDC invesivo ductel cercinome



### **Triple-negative breast cancer**

- Tumour cells negative for ER,PR and HER2
- 10 to 15% of sporadic breast cancer cases
- Characteristics include:
  - higher prevalence among premenopausal African-American patients
  - high nuclear grade and proliferative indices
  - frequently abnormalities on p53 and BRCA 1 genes
  - chemosensitive but poor prognosis
  - peak risk of recurrence is between first and third years and the majority of deaths occur in the first 5 years following therapy.



#### REVIEW ARTICLE

#### CURRENT CONCEPTS

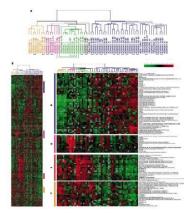
#### Triple-Negative Breast Cancer

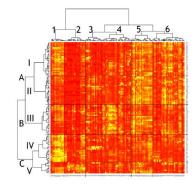
William D. Foulkes, M.B., B.S., Ph.D., Ian E. Smith, M.D., and Jorge S. Reis-Filho, M.D., Ph.D.

N ENGLJ MED 363;20 NEJM.ORG NOVEMBER 11, 2010

#### Review

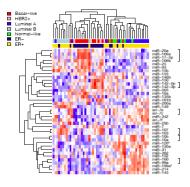
#### Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists


Sunil Badve<sup>1</sup>, David J Dabbs<sup>2</sup>, Stuart J Schnitt<sup>3</sup>, Frederick L Baehner<sup>4</sup>, Thomas Decker<sup>5</sup>, Vincenzo Eusebi<sup>6</sup>, Stephen B Fox<sup>7</sup>, Shu Ichihara<sup>8</sup>, Jocelyne Jacquemier<sup>9</sup>, Sunil R Lakhani<sup>10</sup>, José Palacios<sup>11</sup>, Emad A Rakha<sup>12</sup>, Andrea L Richardson<sup>13</sup>, Fernando C Schmitt<sup>14</sup>, Puay-Hoon Tan<sup>15</sup>, Gary M Tse<sup>16</sup>, Britta Weigelt<sup>17</sup>, Ian O Ellis<sup>12</sup> and Jorge S Reis-Filho<sup>18</sup>


 There is still no internationally accepted definition for basal-like breast cancers and how best to define these tumours is a matter of controversy and ongoing debate.

#### letters to nature

#### Molecular portraits of human breast tumours

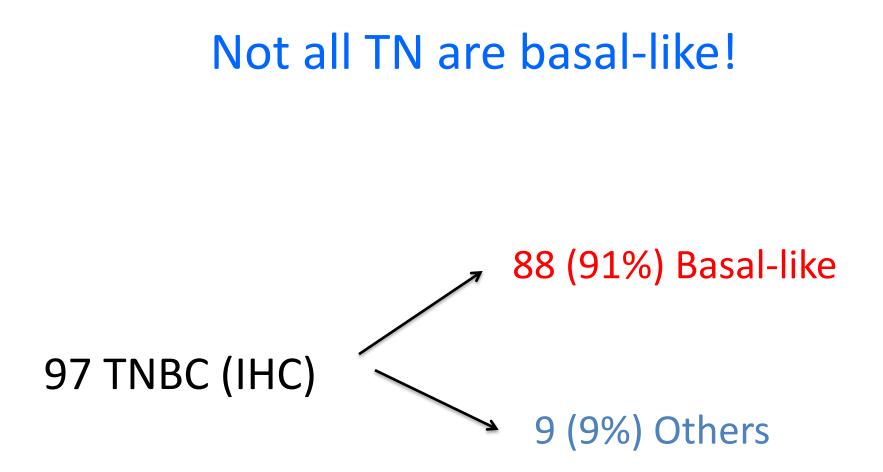

Charles M. Perou<sup>→</sup>; Therese Sarlie<sup>+</sup>; Michael B. Eisen<sup>+</sup>, Matt van de Rijn<sup>5</sup>; Stefanis S. Jaffrey<sup>1</sup>; Christian A. Rees<sup>+</sup>, Jonathan R. Polack<sup>1</sup>; Douglas T. Ress<sup>+</sup>, Rilde Johnsen<sup>†</sup>; Lars A. Aksien<sup>2</sup>; Øyslin Flage<sup>+</sup>, Alexander Pergamenschiko<sup>+</sup>, Cherf William<sup>+</sup>; Shifley X. Zhu<sup>5</sup>; Per E. Lanning<sup>++</sup>; Anne-Lise Berresen-Dale<sup>+</sup>; Patrick O. Brown<sup>+</sup>)<sup>+</sup> & David Botstein<sup>+</sup> Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression Kristyna Brozkova<sup>1</sup>, Eva Budinska<sup>2</sup>, Pavel Bouchal<sup>1,3</sup>, Lenka Hernychova<sup>4</sup>, Dana Knoflickova<sup>1</sup>, Dalibor Valk<sup>1</sup>, Rostislav Vyzula<sup>1</sup>, Borivoj Vojtesek<sup>1</sup> and Rudolf Nenutil<sup>1</sup>





#### MicroRNA expression profiling of human breast cancer identifies new markers of tumour subtype

Cherie Blenkiron<sup>1,2,3,4\*</sup>, Leonard D Goldstein<sup>1,2,5\*</sup>, Natalie P Thorne<sup>1,2,5</sup>, Inmaculada Spiteri<sup>1,2</sup>, Suet-Feung Chin<sup>1,2</sup>, Mark J Dunning<sup>1,2</sup>, Nuno L Barbosa-Morais<sup>1,2</sup>, Andrew E Teschendorff<sup>1,2</sup>, Andrew R Green<sup>6</sup>, Ian O Ellis<sup>6</sup>, Simon Tavaré<sup>1,2,5</sup>, Carlos Caldas<sup>1,2,5</sup>, Eric A Miska<sup>3,4,5</sup>




## **Basal-like breast carcinomas**

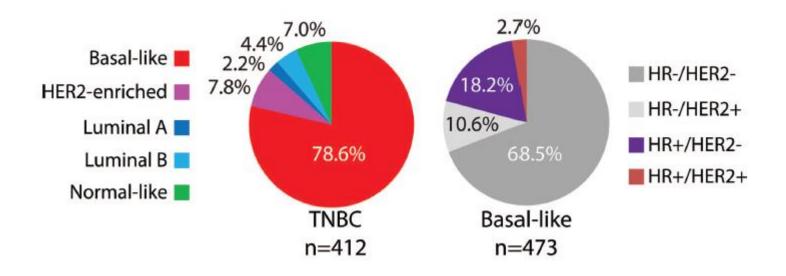
#### Table 1 | Highlights of genomic, clinical and proteomic features of subtypes

| Subtype                                | Luminal A                                                                                       | Luminal B                                                                                                           | Basal-like                                                                                             | HER2E                                                                                                |
|----------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| ER <sup>+</sup> /HER2 <sup>-</sup> (%) | 87                                                                                              | 82                                                                                                                  | 10                                                                                                     | 20                                                                                                   |
| HER2 <sup>+</sup> (%)                  | 7                                                                                               | 15                                                                                                                  | 2                                                                                                      | 68                                                                                                   |
| TNBCs (%)                              | 2                                                                                               | 1                                                                                                                   | 80                                                                                                     | 9                                                                                                    |
| TP53 pathway                           | TP53 mut (12%); gain of MDM2<br>(14%)                                                           | TP53 mut (32%); gain of MDM2<br>(31%)                                                                               | TP53 mut (84%); gain of MDM2<br>(14%)                                                                  | TP53 mut (75%); gain of<br>MDM2 (30%)                                                                |
| PIK3CA/PTEN pathway                    | PIK3CA mut (49%); PTEN<br>mut/loss (13%); INPP4B loss (9%)                                      | PIK3CA mut (32%) PTEN mut/loss                                                                                      |                                                                                                        |                                                                                                      |
| RB1 pathway                            | Cyclin D1 amp (29%); CDK4 gain<br>(14%); low expression of<br>CDKN2C; high expression of RB1    | Cyclin D1 amp (58%); <i>CDK4</i> gain<br>(25%)                                                                      | RB1 mut/loss (20%); cyclin E1<br>amp (9%); high expression of<br>CDKN2A; low expression of RB1         | Cyclin D1 amp (38%);<br>CDK4 gain (24%)                                                              |
| mRNA expression                        | High ER cluster; low proliferation                                                              | Lower ER cluster; high proliferation                                                                                | Basal signature; high proliferation                                                                    | HER2 amplicon signature;<br>high proliferation                                                       |
| Copy number                            | Most diploid; many with quiet<br>genomes; 1q, 8q, 8p11 gain; 8p,<br>16q loss; 11q13.3 amp (24%) | Most aneuploid; many with focal<br>amp; 1q, 8q, 8p11 gain; 8p, 16q<br>loss; 11q13.3 amp (51%);<br>8p11.23 amp (28%) | Most aneuploid; high genomic<br>instability; 1q, 10p gain; 8p, 5q<br>loss; <i>MYC</i> focal gain (40%) | Most aneuploid; high<br>genomic instability; 1q, 8q<br>gain; 8p loss; 17q12 focal<br>ERRB2 amp (71%) |
| DNA mutations                          | PIK3CA (49%); TP53 (12%);<br>GATA3 (14%); MAP3K1 (14%)                                          | TP53 (32%); PIK3CA (32%);<br>MAP3K1 (5%)                                                                            | TP53 (84%); PIK3CA (7%)                                                                                | TP53 (75%); PIK3CA<br>(42%); PIK3R1 (8%)                                                             |
| DNA methylation                        | -                                                                                               | Hypermethylated phenotype for<br>subset                                                                             | Hypomethylated                                                                                         | -                                                                                                    |
| Protein expression                     | High oestrogen signalling; high<br>MYB; RPPA reactive subtypes                                  | Less oestrogen signalling; high<br>FOXM1 and MYC; RPPA reactive<br>subtypes                                         | High expression of DNA repair<br>proteins, PTEN and INPP4B loss<br>signature (pAKT)                    | High protein and phospho-<br>protein expression of EGFR<br>and HER2                                  |

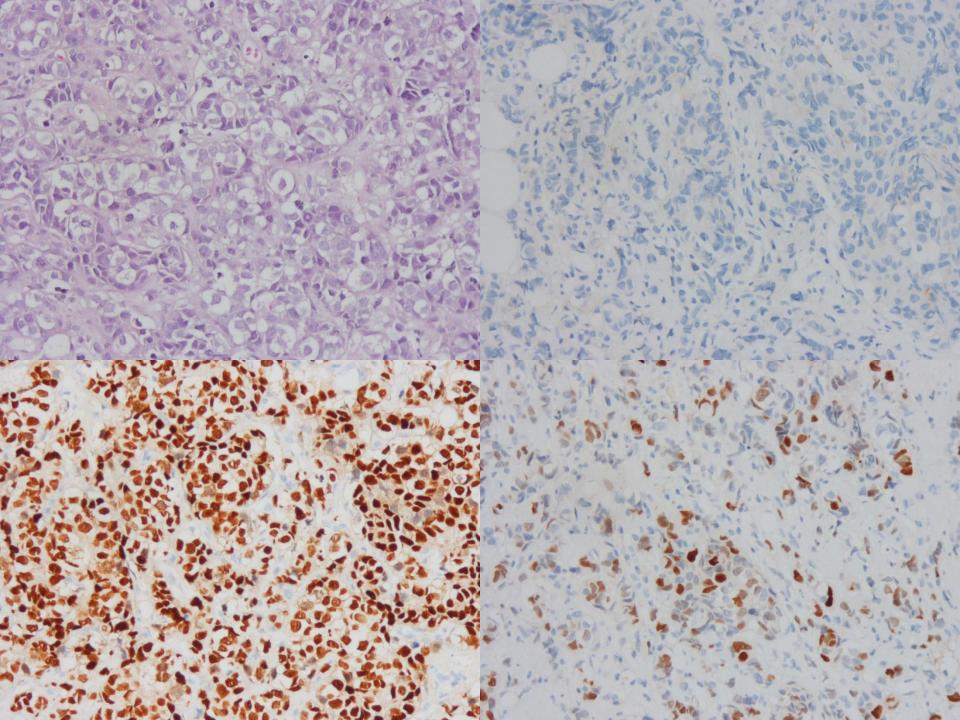
Percentages are based on 466 tumour overlap list. Amp, amplification; mut, mutation.



Kreike B et al. et al. BCR 2007




#### Breast Cancer


### Molecular Characterization of Basal-Like and Non-Basal-Like Triple-Negative Breast Cancer

ALEIX PRAT,<sup>a,b,c</sup> BARBARA ADAMO,<sup>b,c</sup> MAGGIE C.U. CHEANG,<sup>d</sup> CAREY K. ANDERS,<sup>d</sup> LISA A. CAREY,<sup>d</sup> CHARLES M. PEROU<sup>d,e,f</sup>

*The Oncologist* 2013;18:123–133

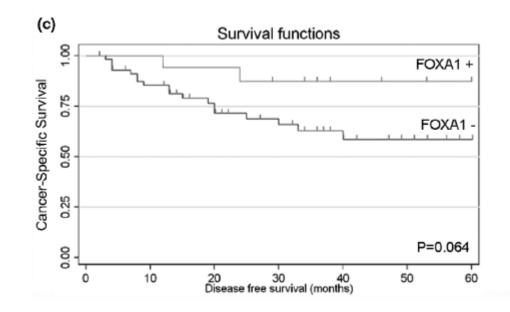


There are limitations to use IHC for Receptors as Surrogates for Molecular Subtype



TN and basal-like definitions should not be considering synonymous because considerable discordance exists (~25%)

- False-positivity or false-negativity of the IHC-based assays for determining HR and HER2 status, because these tests are challenged by interlaboratory and intermethod discordance rates.
- Assessment in different areas of the tumour ? Unlikely that two different subtypes coexist in the same tumour enough to explain the discordance rate.
- Gene expression measures a large number of related genes, compared with the 3 individual biomarkers used to define TN disease. For example, a TN tumour that has low levels of ESR1 and PGR might be luminal due to the expression of other luminal-related genes (GATA3 and/or FOX1A).




#### Research article Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours

André Albergaria<sup>1,2</sup>, Joana Paredes<sup>2</sup>, Bárbara Sousa<sup>2</sup>, Fernanda Milanezi<sup>2</sup>, Vítor Carneiro<sup>3</sup>, Joana Bastos<sup>4,5</sup>, Sandra Costa<sup>1</sup>, Daniella Vieira<sup>6</sup>, Nair Lopes<sup>2</sup>, Eric W Lam<sup>7</sup>, Nuno Lunet<sup>4,5</sup> and Fernando Schmitt<sup>2,8</sup>

Breast Cancer Research 2009, 11:R40 (doi:10.1186/bcr2327)

### **ER NEGATIVE TUMOURS**



Triple-negative breast cancer is a heterogeneous clinical entity

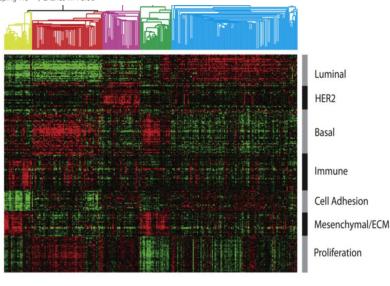
- Gene expression profile classification revealed an heterogeneous group of breast malignancies:
  - Basal-like (EGFR and/or CK5/6 and /or CK14 and/or PCad)
  - Claudin-low (low/absent expression of adhesion molecules)
  - Molecular apocrine
  - Other intrinsic molecular subtypes
  - Normal-breast like (normal adipose tissue and other non epithelial and basal epithelial) ???

## **Claudin-low carcinomas**

New molecular subgroup, sorted from the triple negative breast cancer group

Prat et al. Breast Cancer Research 2010, 12:R68 http://breast-cancer-research.com/content/12/5/R68




#### RESEARCH ARTICLE

+2 +1 0 -1 -2

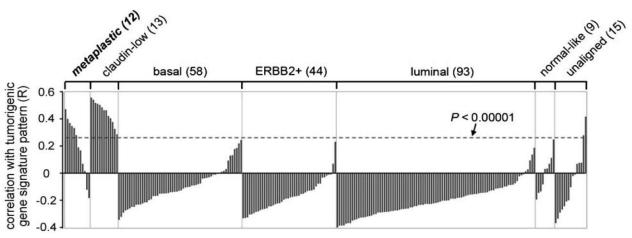
Open Access

## Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer

Aleix Prat<sup>1,2,3</sup>, Joel S Parker<sup>1,2†</sup>, Olga Karginova<sup>1,2,3†</sup>, Cheng Fan<sup>1</sup>, Chad Livasy<sup>1,3</sup>, Jason I Herschkowitz<sup>4</sup>, Xiaping He<sup>1,2,3</sup>, Charles M Perou<sup>1,2,3\*</sup>



Claudin-low (CL)
 Basal-like (BL)
 Luminal A and B (LA and LB)
 HER2-enriched (H2)


•Low expression of genes involved in tight junctions and cell-cell adhesion:

- •Claudins 3, 4, 7,
- Occludin
- •Ecadherin
- Low expression of luminal genes,
  Inconsistent basal gene expression
  High expression of lymphocyte and endothelial cell markers

#### Characterization of a Naturally Occurring Breast Cancer Subset Enriched in Epithelial-to-Mesenchymal Transition and Stem Cell Characteristics

Bryan T. Hennessy,<sup>126</sup> Ana-Maria Gonzalez-Angulo,<sup>236</sup> Katherine Stemke-Hale,<sup>26</sup> Michael Z. Gilcrease,<sup>4</sup> Savitri Krishnamurthy,<sup>1</sup> Ju-Seog Lee,<sup>2</sup> Jane Fridlyand,<sup>7</sup> Aysegul Sahin,<sup>4</sup> Roshan Agarwal,<sup>2</sup> Corwin Joy,<sup>3</sup> Wenbin Liu,<sup>5</sup> David Stivers,<sup>5</sup> Keith Baggerly,<sup>5</sup> Mark Carey,<sup>56</sup> Ana Lluch,<sup>8</sup> Carlos Monteagudo,<sup>8</sup> Xiaping He,<sup>10</sup> Victor Weigman,<sup>10</sup> Cheng Fan,<sup>11</sup> Juan Palazzo,<sup>11</sup> Gabriel N. Hortobagyi,<sup>7</sup> Laura K. Nolden,<sup>8</sup> Nicholas J. Wang,<sup>7</sup> Vicente Valero,<sup>3</sup> Joe W. Gray,<sup>7</sup> Charles M. Perou,<sup>10</sup> and Gordon B. Mills<sup>26</sup>

Departments of Cynecologic Medical Oncology Systems Biology. Thenst Medical Oncology, Pathology and Wioinformatics and Computational Biology and Waberg Center for Molecular Markers, The University of Teass M. D. Anderson Cancer Center, Houston, Tease X anerence Berledge National Laboratory, Berledy, California, 'Cline Hoopital and 'University of Valencia, Valencia, Spain: "Lineberger Comprehensive Cancer Center, Chappel Hill, North Carolina and "Pepartnett of Pathology, Thomas piferon University Philadelphia, Pennsylvaia



CD44+/CD24-/low phenotype

## MBCs and Claudin-low tumors present similar transcriptional profiles and are enriched in stem cell characteristics



Contents lists available at SciVerse ScienceDirect

The Breast



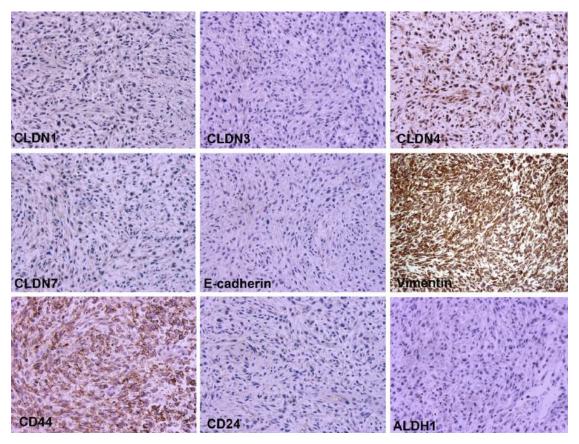
journal homepage: www.elsevier.com/brst

Original article

Immunohistochemical features of claudin-low intrinsic subtype in metaplastic breast carcinomas

Renê Gerhard <sup>a,g</sup>, Sara Ricardo <sup>a,b,g</sup>, André Albergaria <sup>a</sup>, Madalena Gomes <sup>a</sup>, Alfredo Ribeiro Silva <sup>c</sup>, Ângela Flavia Logullo <sup>d</sup>, Jorge F. Cameselle-Teijeiro <sup>e</sup>, Joana Paredes <sup>a,f</sup>, Fernando Schmitt <sup>a,f,\*</sup>

<sup>a</sup> IPATIMUP – Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal

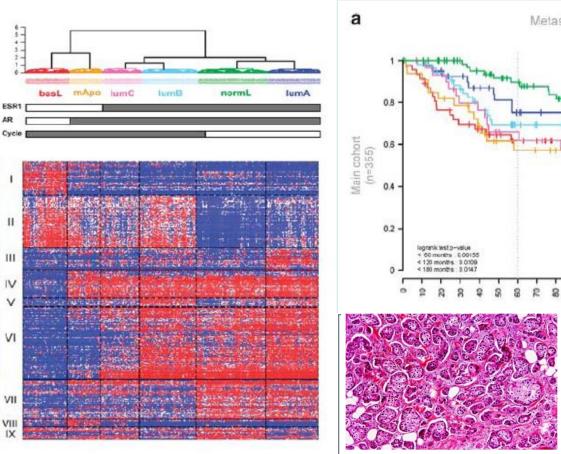

<sup>b</sup>ICBAS – Abel Salazar Biomedical Science Institute, Porto, Portugal

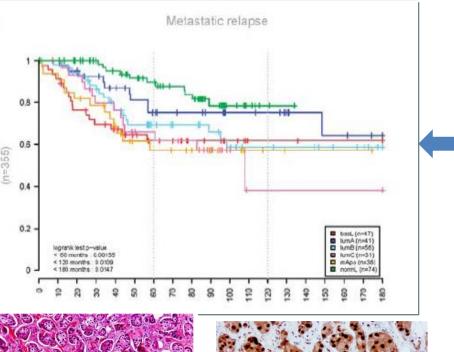
<sup>c</sup> Department of Pathology, Medical Faculty, University of São Paulo, Ribeirão Preto, Brazil

<sup>d</sup> Department of Pathology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil

<sup>e</sup> Complexo Hospitalar Universitario de Vigo (CHUVI), Vigo, Spain

<sup>f</sup>Medical Faculty of Porto University, Porto, Portugal





## **Molecular Apocrine**

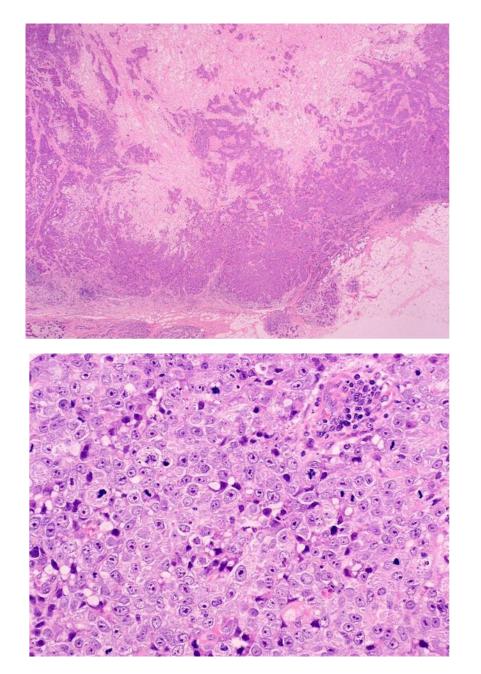
# Benign and malignant apocrine lesions of the breast

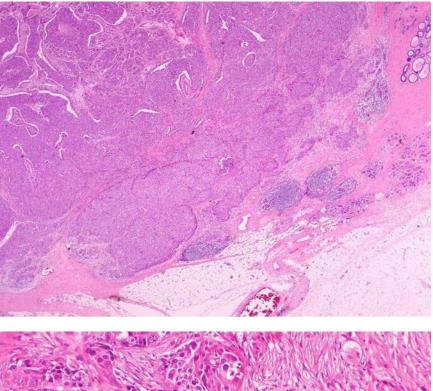
Expert Rev. Anticancer Ther. 12(2), 215-221 (2012)

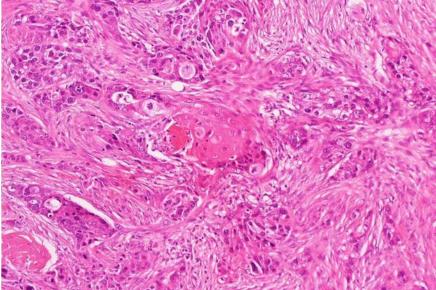
Renê Gerhard<sup>±1</sup>, José Luis Costa<sup>±1</sup> and Fernando Schmitt<sup>\*1,2</sup>






Notem Pathology (2005) 1-8 o 2005 USGAP: Inc. All rights reserved 0893-395205 \$30.00


Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma

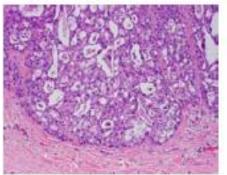

Chad A Livasy<sup>1,2</sup>, Gamze Karaca<sup>3</sup>, Rita Nanda<sup>4</sup>, Maria S Tretiakova<sup>4</sup>, Dlufunmilayo I Olopade<sup>4</sup>, Dominic T Moore<sup>2,5</sup> and Charles M Perou<sup>3,2,3</sup>

## Histology of Basal-Like Cancers Identified By Expression Profiling

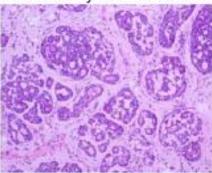
- Histologic grade 3 (100%)
- Solid architecture
- No tubule formation, high density of cells with no intervening stroma
- Pushing border (61%)
- Stromal lymphocytic infiltrate (56%)
- High mitotic rate (100%)
- Geographic zones of necrosis (74%)
- Medullary-like features
- (Central fibrotic/acellular zone)
- (Little or no associated DCIS)







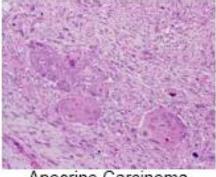

# Do we still need a morphological classification?


## "Triple-Negative" breast carcinomas

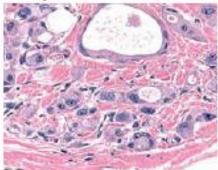
Low grade tumours

Secretory carcinoma

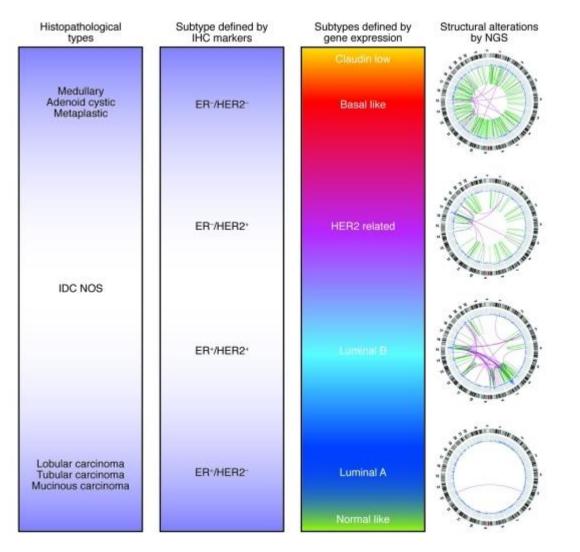



Adenoid cystic carcinoma



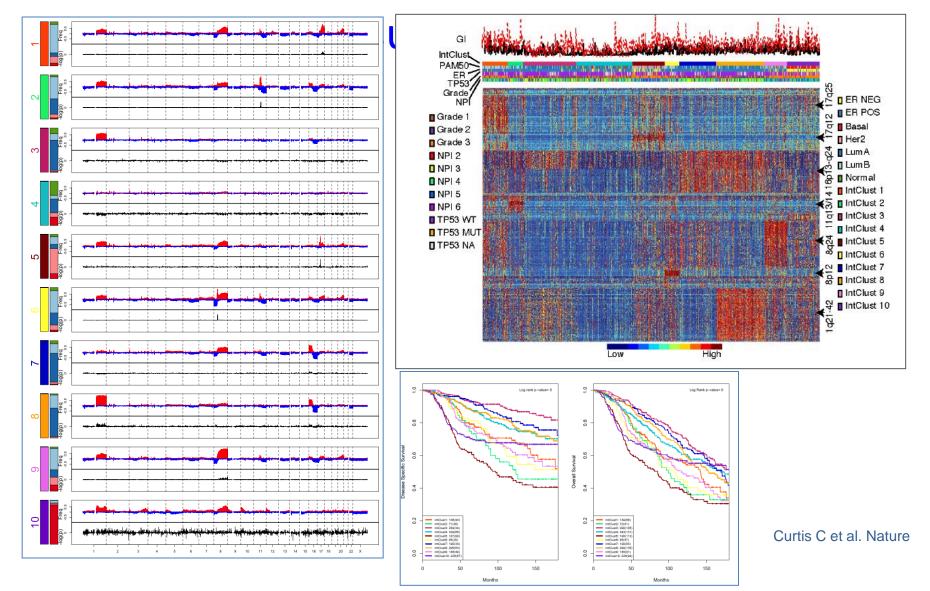

Medullary breast cancer Grade 3 - IDC-NST

High grade tumours

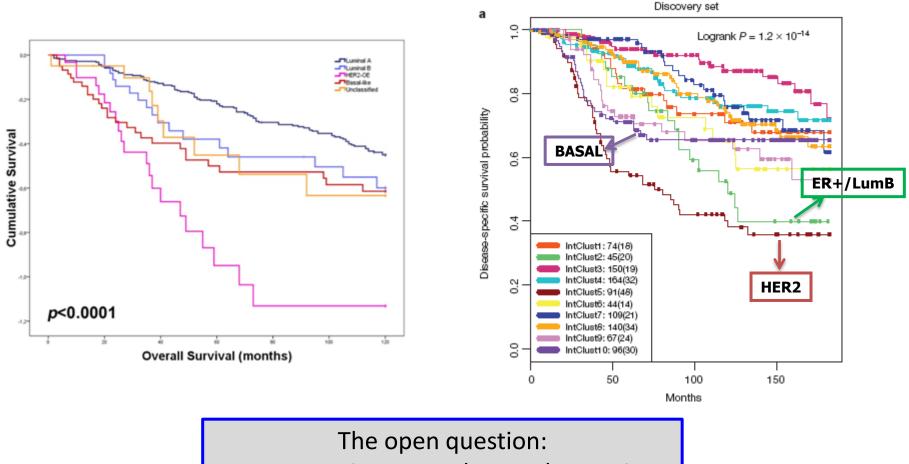

Metaplastic breast cancer



Apocrine Carcinoma

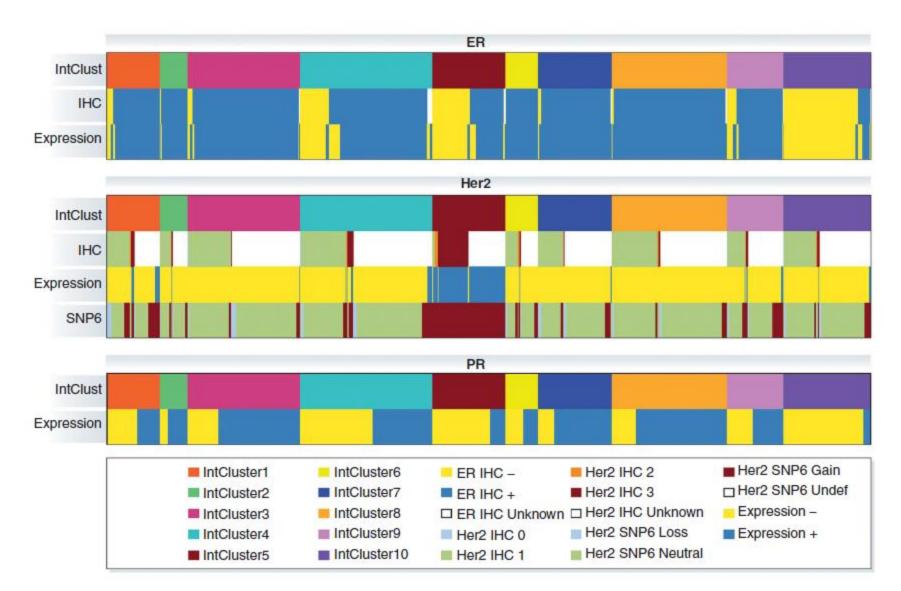



## **Breast cancer classification**




Russnes et al. JCI 2011

# The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel




## Integrative clusters and survival



How can we integrate these subtypes into daily clinical work?

## A new genome-driven integrated classification of breast cancer and its implications



## High-throughput DNA sequencing



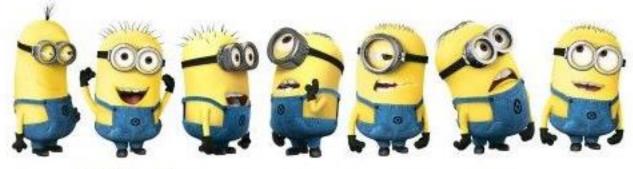
### Are the batteries included?







## Overview of all genomic variation


TTAACCCCTTCGAATGCTCATCAAATCGTATCTCCCGAAAATGTCTTTTATG TATCTTACTTCCACCACATAATCTACGAACTATCAATGTTTATGATGGTCAG GTTTGTTAACAAGTGATTTGAATCTGATAATGCGAAGAGTTGCTAATAATGA GCAAAAATACAAAAAATCTTGGATTCTATCGATAACAGCCGAGGTGCCAATC TACAAATAAAAAGCTTACTTTGGATACTTTGACAGGTGGACACTCAAAAGAA TGCGAAGTTATATTAATGGCAAACGTATTCCTGAGACTGCCAGAGCTGTAAT TCTATGAATAAAACTGGCTTTATTGAAGTACCATCTTACATTTTAAACAAG1 TGTTGTCTTTTATAATCACGTTACGAAAGATAACATACTCAAAAGTCTTCAA AAGCTTTTCTAACATATATCAAAAGTGATCATAATTCTGAAAAT TATA GATTTAGCACAGAAGAATGGATATTTAACCTTGGCTCCTAATTTCGGTGATA CTAATATCCAATCTGGTATAATAAAAAGATCAGAAGGGT ITACTATTAACA1 ACAATTTGCACATCTTTA ATGACAATAT CAAATCCCCATGTGCCAATCTCGAACAAGCTTTGATTATGAACTCACGAAAT AAAATTCTATAACAAGCAATCCAATGTTCGGCTTGGTCCAAGATCAAATACC AATAAGTTATATAGACGACAAAATTATACATATAACGATGCGTTGGTGATTT ATTCCCATTTCTCTTAACACCCCCCAAAACATAATACCCCCAAAAACATATA



## ARTICLE

# Landscape of somatic mutations in 560 breast cancer whole-genome sequences

Serena Nik–Zainal<sup>1,2</sup>, Helen Davies<sup>1</sup>, Johan Staaf<sup>3</sup>, Manasa Ramakrishna<sup>1</sup>, Dominik Glodzik<sup>1</sup>, Xueqing Zou<sup>1</sup>, Inigo Martincorena<sup>1</sup>, Ludmil B. Alexandrov<sup>1,4,5</sup>, Sancha Martin<sup>1</sup>, David C. Wedge<sup>1</sup>, Peter Van Loo<sup>1,6</sup>, Young Seok Ju<sup>1</sup>, Marcel Smid<sup>7</sup>, Arie B. Brinkman<sup>8</sup>, Sandro Morganella<sup>9</sup>, Miriam R. Aure<sup>10,11</sup>, Ole Christian Lingjærde<sup>11,12</sup>, Anita Langerød<sup>10,11</sup>, Markus Ringnér<sup>3</sup>, Sung–Min Ahn<sup>13</sup>, Sandrine Boyault<sup>14</sup>, Jane E. Brock<sup>15</sup>, Annegien Broeks<sup>16</sup>, Adam Butler<sup>1</sup>, Christine Desmedt<sup>17</sup>, Luc Dirix<sup>18</sup>, Serge Dronov<sup>1</sup>, Aquila Fatima<sup>19</sup>, John A. Foekens<sup>7</sup>, Moritz Gerstung<sup>1</sup>, Gerrit K. J. Hooijer<sup>20</sup>, Se Jin Jang<sup>21</sup>, David R. Jones<sup>1</sup>, Hyung–Yong Kim<sup>22</sup>, Tari A. King<sup>23</sup>, Savitri Krishnamurthy<sup>24</sup>, Hee Jin Lee<sup>21</sup>, Jeong–Yeon Lee<sup>25</sup>, Yilong Li<sup>1</sup>, Stuart McLaren<sup>1</sup>, Andrew Menzies<sup>1</sup>, Ville Mustonen<sup>1</sup>, Sarah O'Meara<sup>1</sup>, Iris Pauporté<sup>26</sup>, Xavier Pivot<sup>27</sup>, Colin A. Purdie<sup>28</sup>, Keiran Raine<sup>1</sup>, Kamna Ramakrishnan<sup>1</sup>, F. Germán Rodríguez–González<sup>7</sup>, Gilles Romieu<sup>29</sup>, Anieta M. Sieuwerts<sup>7</sup>, Peter T. Simpson<sup>30</sup>, Rebecca Shepherd<sup>1</sup>, Lucy Stebbings<sup>1</sup>, Olafur A. Stefansson<sup>31</sup>, Jon Teague<sup>1</sup>, Stefania Tommasi<sup>32</sup>, Isabelle Treilleux<sup>33</sup>, Gert G. Van den Eynden<sup>18,34</sup>, Peter Vermeulen<sup>18,34</sup>, Anne Vincent–Salomon<sup>35</sup>, Lucy Yates<sup>1</sup>, Carlos Caldas<sup>36</sup>, Laura van't Veer<sup>16</sup>, Andrew Tutt<sup>37,38</sup>, Stian Knappskog<sup>39,40</sup>, Benita Kiat Tee Tan<sup>41,42</sup>, Jos Jonkers<sup>16</sup>, Åke Borg<sup>3</sup>, Naoto T. Ueno<sup>24</sup>, Christos Sotiriou<sup>17</sup>, Alain Viari<sup>43,44</sup>, P. Andrew Futreal<sup>1,45</sup>, Peter J. Campbell<sup>1</sup>, Paul N. Span<sup>46</sup>, Steven Van Laere<sup>18</sup>, Sunil R. Lakhani<sup>30,47</sup>, Jorunn E. Eyfjord<sup>31</sup>, Alastair M. Thompson<sup>28,48</sup>, Ewan Birney<sup>9</sup>, Hendrik G. Stunnenberg<sup>8</sup>, Marc J. van de Vijver<sup>20</sup>, John W. M. Martens<sup>7</sup>, Anne–Lise Børresen–Dale<sup>10,11</sup>, Andrea L. Richardson<sup>15,19</sup>, Gu Kong<sup>22</sup>, Gilles Thomas<sup>44</sup> & Michael R. Stratton<sup>1</sup>







### English:

Hello Goodbye! Thank you! For you Marriage Apples Ice-cream I'm sorry I'm hungry UglyI I swear... Fire We love you I hate you! What Cheers Kiss kiss

## Minions Language Minions:

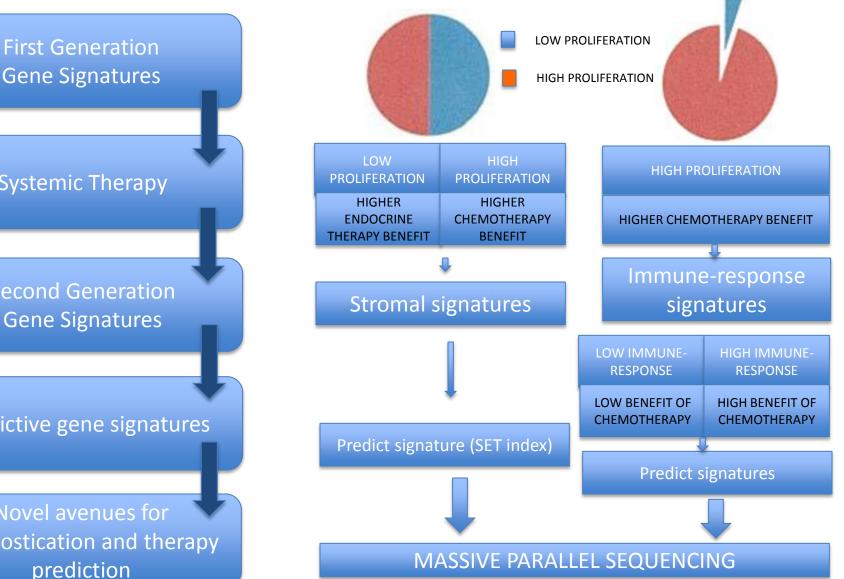
Bello! Poopavel Tank yul Para tu La boda Papples Gelato Bi-do We want bananal Bananoninal Underwear... Bee-do-bee-do-bee-do Tulaliloo ti amo Tatata-bala-tu Po-ka Kampai Muak muak muak



# Massively Parallel Sequencing-based studies of Breast Cancer

- The collection of genetic aberrations found in breast cancer is complex with a limited number of genes that are frequently mutated in unselected cases.
- The number of genes mutated in small minorities of breast cancer is vast.
- The repertoire of mutations in luminal and basal-like breast cancer is rather different.
- There is no gene or mutation that defines a subtype of breast cancer.
- These studies led to the identification of novel driver genes and that genes that encodes ER alpha (ESR1) and HER2 can be targeted by activating mutations.

## Molecular Classification Conclusions


- GEP studies have provided significant advances in the molecular classification and prognostication of breast cancer, and has given new insights regarding therapeutic prediction.
- The clinical management of patients is still based on the assessment of morphology, ER, PR, HER2 and Ki67.
- New avenues for discovering and validating prognostic and predictive biomarkers are being developed through NGS approaches.

#### **Breast Cancer: prognostication** and therapy prediction

### **ER POSITIVE**

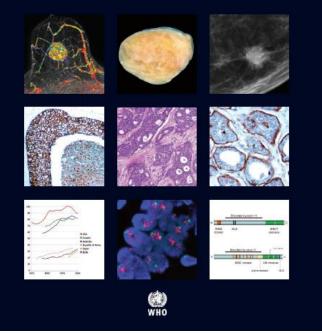
### **ER NEGATIVE**

#### **PROGNOSTIC SIGNATURES**



Systemic Therapy

Second Generation **Gene Signatures** 


Predictive gene signatures

Novel avenues for prognostication and therapy prediction

## Balancing between classic morphology and molecular classification

## WHO Classification of Tumours of the Breast

Edited by Sunil R. Lakhani, Ian O. Ellis, Stuart J. Schnitt, Puay Hoon Tan, Marc J. van de Vijver



 There will be no morphology versus molecular but personalized medicine is based on a combined morphologicalmolecular pathology report including classical morphology (HE/IHC/ISH) and diverse molecular analyses.

# Where are we today (at least at our Institution)?

- ER, PR and HER2 status are the major drivers of clinical decision making regarding the type of systemic therapy.
- These 3 biomarkers in conjunction with histologic grade/mitotic count could be used to infer luminal, HER2 and TN subtypes .
- But given current options for systemic therapy, need to subclassify beyond ER,PR and HER2 in clinical practice is debatable.
- Clinicians are increasingly thinking about breast cancers by their molecular subtype.

