GEP NEN management Primary tumour resection in metastatic disease # Preceptorship on Neuroendocrine Neoplasms ESMO **28-29 April 2017 Prague** Professor Andrea Frilling Department of Surgery and Cancer Imperial College London ENETS Center of Excellence ### **Metastasised neuroendocrine tumours** - Symptomatic primary tumours and resectable metastases - Symptomatic primary tumours and non-resectable metastases - Asymptomatic primary tumours and resectable metastases - Asymptomatic primary tumours and non-resectable metastases ## **Neuroendocrine tumours des GEP systems** **ICL 2010-2013** #### 161 GEP NET | | Grade 1 | Grade 2 | Grade 3 | |------------|---------|---------|---------| | Metastasis | 46% | 78% | 100% | | Stage IV | 28% | 72% | 90% | | T1-4N0M0 | 54% | 22% | 0 | Pancreatic NET: 84, small bowel NET: 37 | | PNET | SB NET | |------------|------|--------| | Metastasis | 43% | 92% | | Stage IV | 32% | 65% | ### **Indications for surgery in advanced PNETs** - Reduction of hormonal excess - Avoidance of symptoms related to the mass effect / local complications - Possible impact on progression of liver disease and survival - Measure prior to liver transplantation - Reduction of tumor mass to increase effectiveness of peptide receptor radionuclide treatment and targeted drugs? ## The role of debulking in combination with peptide receptor radiotherapy needs to be evaluated ### **Symptoms related to the local mass effect** Retroperitoneal extension 48% Intestinal obstruction 32% Vascular encasement 14% Hellman P et al. World J Surg 2000;34,1353 Boudreaux JP et al. Ann Surg 2005;241,839 ## Should primary PNET be resected in patients with unresectable liver metastases? **Table 1.** Summary of the 6 studies initially considered potentially appropriate for the review | Study
(first author) | Year of
pub-
lication | Country | Study
period
accrual | Setting | | PNET patients | PNETs
patients'
features | Patients with PNETs
and unresectable
liver metastases | Treatment comparison | Outcome | |-------------------------|-----------------------------|------------------------|----------------------------|-------------------|-----|-----------------|--------------------------------|---|---|-------------------------------------| | Solorzano [19] | 2001 | USA | 1988–1999 | single-
centre | RCS | 163
sporadic | 163 NF | 96 | resected vs.
unresected primary | median survival,
5-year survival | | Schurr [16] | 2007 | Germany | 1987-2004 | single-
centre | RCS | 62
sporadic | 46 NF
8 PDEC | not reported | R0/R1 resected vs.
R2/non-resected | 5-year survival | | Nguyen [18] | 2007 | USA | 1989–1999 | single-
centre | RCS | 73
malignant | 51 NF | 51 | resected vs.
unresected primary | 5-year survival | | Fischer [17] | 2008 | Germany
Switzerland | 1994–2006 | multi-
centre | PCS | 118 | 13 PDEC | 23 | R0 resection vs.
R1/R2 resection vs.
exploration | 5-year survival | | Bettini [15] | 2009 | Italy | 1990-2004 | single-
centre | PCS | 51 | 51 NF
5 PDEC | 51 | resected vs.
unresected primary | mean survival,
PFS | | Bruzoni [11] | 2009 | USA | 2001–2008 | single-
centre | RCS | 35 | 35 NF
WDEC | 20 | no liver metastases vs.
liver metastases <50% vs.
liver metastases >50% | 3-year survival | RCS = Retrospective cohort study; PCS = prospective cohort study; PFS = progression-free survival; NF = no-functioning; WDEC = well-differentiated endocrine carcinoma; PDEC = poorly differentiated endocrine carcinoma. ## Should primary PNET be resected in patients with unresectable liver metastases? | Study
(first author) | Median overall survival, months | 5-Year
survival, % | Median PFS
months | Symptom improvement | |-------------------------|---------------------------------|-----------------------|-----------------------|---------------------| | Bettini [15] | | | | | | Resected | 54.3 (95% CI 25-86) | 40.4 | 7.6 (95% CI 0.5-14.7) | 88% | | Unresected | 39.5 (95% CI 5.4-73.6) | 41.8 | 12 (95% CI 3.7-20.3) | 31% | | Nguyen [18] | | | | | | Resected | not reported | 60 | not reported | not reported | | Unresected | not reported | 30 | not reported | not reported | | Solorzano [19] | • | | • | • | | Resected | 36 (95% CI 26.4-96) | 49 | not reported | not reported | | Unresected | 21.6 (95% CI 16.8-32.4) | 16 | not reported | not reported | # Pancreatic NET – outcome according to extent of surgical treatment Zerbi A et al. HPB Journal 2013; doi:10.1111/hpb.12065 ### **Metastasised small bowel neuroendocrine tumors** ### Small bowel neuroendocrine tumors n=84 patients | Parameter | N (%) | |---|-----------------------------------| | Total number of patients | 84 | | Mean age (range) | 59.6 years (32 to 88) | | Gender
Male
Female | 46 (54.8)
38 (45.2) | | Tumor functionality Functioning Non-functioning | 27 (32.1)
57 (67.9) | | Tumor grade
G1 (Ki67 ≤2%)
G2 (Ki67 3-20%)
G3 (Ki67 >20%) | 65 (83.3)
11 (14.1)
2 (2.6) | | Tumour Stage | N (%) | |-----------------|-----------| | $T_{1-4}N_0M_0$ | 9 (10.7) | | $T_{1-4}N_1M_0$ | 24 (28.6) | | $T_{1-4}N_0M_1$ | 1 (1.2) | | $T_{1-4}N_1M_1$ | 50 (59.5) | | Locations of distant | N (%) | |----------------------|-----------| | metastases | , | | Liver | 45 (53.6) | | Bone | 1 (1.2) | | Peritoneum | 2 (2.4) | | Liver and bone | 2 (2.4) | | Liver and peritoneum | 1 (1.2) | ## Long term results of surgery for small intestinal NET ## Should primary midgut NETs be resected in patients with unresectable liver metastases? Table 1 Summary of the six studies considered for the review | Reference | Year | Country | Study
accrual
period | Setting
and design | Proportion
of patients with
SI-NETs* | Male
sex (%) | Age
(years)† | Treatment(s) compared | Outcome | |---|------|--------------------|----------------------------|-----------------------|--|-----------------|-----------------|--|------------------------------------| | Givi et al. ¹⁸ | 2006 | Oregon, USA | 1995-2006 | Single RCS | 76 of 84 (90) | 51 | NR | Resected versus unresected | PFS, median OS,
5-year survival | | Strosberg et al. ¹⁹ | 2009 | Florida, USA | 1999-2003 | Single RCS | 146 of 146
(100) | 44.6 | 60 (14-84) | Resected <i>versus</i> unresected | Median OS,
5-year survival | | Ahmed et al. ²⁰ | 2009 | UK | 1973-2007 | Multicentre
RCS | 319 of 360
(88.6) | 52.5 | 61.5 (16–86) | Resected <i>versus</i> unresected | Median OS,
5-year survival | | Søreide et al. ²¹ | 1992 | Norway | 1960-1989 | Single RCS | 65 of 75 (87) | NR | 61 (18–80) | Resected versus unresected and resection versus no resection of metastases | Median OS | | Norlén et al. ²² | 2012 | Sweden | 1985–2010 | Single RCS | 603 of 603
(100) | 53.9 | 63-1(11-3)‡ | Resected <i>versus</i> unresected | 5-year survival | | van der Horst-
Schrivers
et al. ²³ | 2007 | The
Netherlands | 1992-2003 | Single RCS | 47 of 76 (62) | NR | 59·4‡ | Resected <i>versus</i> unresected | Median OS,
5-year survival | ^{*}Values in parentheses are percentages. †Values are median (range) unless indicated otherwise; ‡values are mean(s.d.). SI-NET, small intestinal neuroendocrine tumour; RCS, retrospective cohort study; PFS, progression-free survival; OS, overall survival; NR, not reported. ## Should primary midgut NETs be resected in patients with unresectable liver metastases? | Reference | No. of patients | Median overall survival (months) | 5-year
survival (%) | Median progression-free survival (months) | |----------------------------------|-----------------|----------------------------------|------------------------|---| | Givi et al.18* | Resected 66 | 108 | 81 | 54 | | | Unresected 18 | 50 | 21 | 27 | | Strosberg et al.19 | Resected 100 | 110 | NR | NR | | - | Unresected 35 | 88 | NR | NR | | Ahmed et al.20 | Resected 209 | 119 (89, 149) | 74 | NR | | | Unresected 76 | 57 (32, 81) | 46 | NR | | Søreide et al.21 | Resected 53 | 139 | NR | NR | | | Unresected 12 | 69 | NR | NR | | Norlén et al. ²² | Resected 493 | NR | 75 | NR | | | Unresected 86 | NR | 28 | NR | | Van der Horst-Schrivers et al.23 | Resected 27 | 75 (44, 107) | 57 | NR | | | Unresected 49 | 52 (37, 68) | 44 | NR | Capurso G et al. Brit J Surg 2012;99:1480-6 Frilling A Brit J Surg 2012;99:1486-7 Available online at www.sciencedirect.com #### SciVerse ScienceDirect EJSO 38 (2012) 64-71 The potential for induction peptide receptor chemoradionuclide therapy to render inoperable pancreatic and duodenal neuroendocrine tumours resectable T.W. Barber a,*,1, M.S. Hofman a,b,1, B.N.J. Thomson b,c,2, R.J. Hicks a,b,1 ^a Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia ^b The University of Melbourne, Melbourne, Victoria 3010, Australia ^c Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia Accepted 21 August 2011 Available online 8 September 2011 #### Neoadjuvant Treatment of Nonfunctioning Pancreatic Neuroendocrine Tumors with [177Lu-DOTA⁰,Tyr³]Octreotate Esther I. van Vliet¹, Casper H. van Eijck², Ronald R. de Krijger³, Elisabeth J. Nieveen van Dijkum⁴, Jaap J. Teunissen¹, Boen L. Kam¹, Wouter W. de Herder⁵, Richard A. Feelders⁵, Bert A. Bonsing⁶, Tessa Brabander¹, Eric P. Krenning¹, and Dik J. Kwekkeboom¹ ¹Department of Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; ²Department of Surgery, Erasmus Michoacande Ocampo, University Medical Center, Rotterdam, The Netherlands; ³Department of Pathology, Erasmus Michoacande Ocampo, University Medical Center, Rotterdam, The Netherlands; ⁴Department of Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; ⁵Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; and ⁶Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands. Eur J Nucl Med Mol Imaging (2011) 38:1669–1674 DOI 10.1007/s00259-011-1835-8 ORIGINAL ARTICLE ## Peptide receptor radionuclide therapy as a potential tool for neoadjuvant therapy in patients with inoperable neuroendocrine tumours (NETs) Anna Sowa-Staszczak • Dorota Pach • Robert Chrzan • Małgorzata Trofimiuk • Agnieszka Stefańska • Monika Tomaszuk • Maciej Kołodziej • Renata Mikołajczak • Dariusz Pawlak • Alicja Hubalewska-Dydejczyk - 36-year old male diagnosed with malignant insulinoma (G2 PNET, pancreatic tail tumor, bilobar LM, LN and bone metastases), severe hypoglycaemia in 2012 - Glucose 41 mg/dl, chromogranin A >300 pmol/L - Not suitable for resection or LTX + resection - Treatment with Diazoxide, Everolimus, Sandostatin LAR, TACE of the right liver lobe - Ineffective symptom control, no reduction of tumor mass BEFORE 177Lu PRRT (2012)) *After 4 Doses (2013)* *After 6 Doses (2014)* ## 12-month follow-up - Patient asymptomatic - Back to work as a cardiologist - Glucose, insulin, C-peptide, CgA normal - No evidence of progression on CT and MRI liver - 68 Ga DOTATATE PET/CT no uptake - On Lanreotide 120 mg 4-weekly