University Hospital of Basel
Neuroradiology, Clinic for Radiology & Nuclear Medicine,

Author Of 1 Presentation

Imaging Poster Presentation

P0545 - Automatic MS lesions segmentation using LeMan-PV as a clinical decision-support tool: a longitudinal analysis (ID 1590)

Abstract

Background

LeMan-PV is a prototype that performs cross-sectional and longitudinal detection of Multiple Sclerosis (MS) lesions, which has been validated on conventional (cMRI) and advanced magnetic resonance imaging at 3T (Fartaria et al. 2019). Since this software provides a report that is available shortly after image acquisition, it may be ideal as clinical decision-support tool.

Objectives

To assess LeMan-PV as clinical decision-support tool in a monocentric real-world cMRI dataset from the Swiss Multiple Sclerosis Cohort.

Methods

262 MS patients underwent cMRI at Basel University Hospital in a mean of 3.5 follow-up sessions, with an average of 399 days between two consecutive sessions. cMRI sequences were acquired at 1.5T and 3T in 725 and 195 sessions, respectively. Cross-sectional and longitudinal MS lesions segmentation (i.e. identification of new and enlarging lesions - NLs, ELs) was performed using the LeMAN-PV prototype software. An expert neuroradiologist performed a radiological reading of the number of NLs and ELs in the most recent acquisition by comparing it to the previous one (ground truth, GT), considering only lesions with a diameter larger than 3 mm. The minimum volume thresholds to identify an NL and an EL were chosen by minimizing the patient-wise error between the automated count and the expert ground truth. Two scenarios were evaluated by first assuming disease activity if one or more EL were present, and second by considering activity if NL were present in the new acquisition.

Results

The volume thresholds chosen were 11 and 12 mm3 for ELs and NLs, respectively. For those, LeMan-PV detected 11% more of both ELs and NLs than the neuroradiologist. In the patient-wise evaluation of cases with both sessions acquired at 1.5T (70%), LeMan-PV showed sensitivities of 93% and 78% and specificities of 62% and 43% when evaluating ELs and NLs. For the 3T pairs of sessions (8%), values were 68% and 72% for ELs and 73% and 68% for NLs. Finally, for cases with a first acquisition at 1.5T and a second at 3T (22%), values were 76% and 73% for ELs and 71% and 65% for NLs.

Conclusions

The count of new and enlarging MS lesions using LeMan-PV were close to the one performed by an expert neuroradiologist; the software performed better when assessing disease activity via detection of enlarging lesions rather than by identifying new lesions. More 3T data is being currently collected at 3T to provide a size-matched inter-scanner comparison.

Collapse