IRCCS Istituto Auxologico Italiano, University of Milan Medical School
Department of Neurology-Stroke Unit and laboratory of Neuroscience

Author Of 1 Presentation

Imaging Poster Presentation

P0580 - Focal inflammatory activity and lesion repair are associated with brain atrophy rates in MS patients (ID 1092)



The pathogenesis of neurodegeneration in multiple sclerosis (MS) is multifactorial and the determinants of brain atrophy rates are not completely understood.


To investigate the association between annualized atrophy rate (AAR) of multiple brain measures (regional cortical thickness (CTh), volumes of basal ganglia, thalamus, white matter, gray matter, brain and brain parenchymal fraction (BPF)) and: (1) annualized rate of new and enlarging white matter lesions (WMLs); (2) annualized rate of resolved WMLs; (3) occurrence of progression independent of relapse activity (PIRA) during follow-up.


We included 1573 1.5T or 3T brain MRI scans from 378 patients of the Swiss MS Cohort Study (331 relapsing-remitting MS (RRMS), 27 clinically isolated syndrome (CIS), 11 secondary-progressive MS (SPMS), 9 primary-progressive MS (PPMS); 70% female; median age: 41.9 yrs; disease duration: 8.3 yrs; EDSS: 2.0; follow-up time: 4.0 yrs). Longitudinal changes in WMLs were obtained using an automated prototype (LeMan-PV). Brain volumes and CTh AARs were obtained using FreeSurfer longitudinal pipeline (v6.0) after WMLs filling. In patients fulfilling PIRA an EDSS progression had to be confirmed ≥6 months after the index event. Multivariable generalized linear models were used to model the association between AAR (dependent variable) and independent variables (1-3), correcting for age, sex, disease duration and baseline EDSS. p-values were adjusted for Bonferroni multiple comparison correction; for vertex-wise CTh analysis, Monte Carlo Z simulation was performed (cluster threshold p<0.05).


We found positive associations between annualized rate of new and enlarging WMLs and (i) CTh AAR of 8 extensive clusters (bilateral frontal, temporal and occipital regions and right insula, all p<0.01) and (ii) AAR of: caudate bilaterally (p=0.02), white matter volume, brain volume and BPF (p<0.001 for all).

We also found a negative association between annualized rate of resolved WMLs and CTh AAR in 3 cortical clusters (right insula, precentral area and anterior cingulate region, all p<0.05); no associations with AAR of volumes emerged.

57 patients fulfilled PIRA whereas 295 experienced no EDSS progression events: no significant differences in AAR measures were found between these two groups.


In a large cohort of MS patients, with a median follow-up of 4 years, local radiological inflammatory and reparative activity were associated with AAR in multiple brain regions. PIRA did not seem to be related to increased AAR in any of the regions studied.