Imaging Poster Presentation

P0605 - More dynamic functional network switching in cognitively declining multiple sclerosis patients (ID 777)

  • T. Broeders
  • T. Broeders
  • L. Douw
  • A. Eijlers
  • I. Dekker
  • B. Uitdehaag
  • F. Barkhof
  • H. Hulst
  • C. Vinkers
  • J. Geurts
  • M. Schoonheim
Presentation Number
Presentation Topic



Cognitive impairment in multiple sclerosis (MS) is strongly related to functional network dysfunction. In the absence of MS, optimal cognitive functioning of an individual is ensured by dynamically adapting the configuration of the functional network as needed. How these dynamic patterns are altered in MS remains unclear.


Our aim was to investigate the dynamic reconfiguration of cognitively relevant brain networks in MS, to identify specific brain network patterns related to progression of cognitive impairment.


Resting-state functional MRI (rs-fMRI) and cognitive scores were acquired from 230 patients with MS and 59 matched healthy controls, at baseline and at 5 year follow-up. Seven cognitive domains were examined with the expanded Brief Repeatable Battery of Neuropsychological tests. A sliding-window approach was used on the rs-fMRI data, for which brain regions were assigned to one of seven classic literature-based resting-state networks based on connectivity patterns at that point in time. How regions switched between networks was described using measures of promiscuity (number of networks switched to), flexibility (number of switches), cohesion (switches with another region), and disjointedness (independent switches). Linear mixed models were used for baseline and longitudinal analyses, controlling for age, sex, and education.


At baseline, 42% of patients showed cognitive impairment (CI) (18% Mild CI, ≥2 tests Z<-1.5; 23% severe CI, ≥2 tests Z<-2) and 28% of patients declined over time (≥2 tests yearly reliable decline>0.25). At baseline, CI patients showed increased promiscuity, flexibility and cohesion (i.e. more switching between networks) compared to preserved patients. Patients displaying cognitive deterioration showed increases in cohesion over time. Higher baseline cohesion was related to less gray matter volume, and more white matter integrity loss and lesion volume. Within cognitive domains, cohesion was inversely related to verbal memory, information processing speed, and working memory.


In patients with MS, increased switching between brain networks was related to cognitive impairment and structural damage. Cohesion particularly increased over time in patients showing cognitive decline, indicating that switching together with other regions might be particularly more common. These results provide support for the hypothesis of a progressive destabilization of the functional brain network in MS.