Imaging Poster Presentation

P0624 - Quantitative multiparametric 3T-MRI of postmortem multiple sclerosis whole brains (ID 1583)

Speakers
  • R. Galbusera
Authors
  • R. Galbusera
  • M. Barakovic
  • M. Weigel
  • P. Lu
  • P. Dechent
  • E. Bahn
  • F. Van Der Meer
  • L. Kappos
  • W. Brück
  • C. Stadelmann
  • C. Granziera
Presentation Number
P0624
Presentation Topic
Imaging

Abstract

Background

Postmortem MRI provides precious insights into the relation of MRI metrics to pathoanatomical features of multiple sclerosis (MS) and can help to understand the basis of damage and repair.

Objectives

To investigate the respective features of MS lesions in the cortex and in the white matter using multiparametric postmortem MR imaging at 3T and identify discriminant characteristics of white matter lesion subgroups.

Methods

We scanned three fixed brains of secondary-progressive MS patients (mean disease duration 15.3 years) on a standard clinical 3T-MRI scanner with following sequences: Magnetization Transfer Saturation (MTsat), T1-relaxometry (T1-rt), Myelin Water Fraction (MWF) and Diffusion Tensor - Fractional Anisotropy (DTI-FA). We compared these metrics between (i) cortical lesions (CL, n=118) and normal-appearing grey matter (NAGM, n=186) and (ii) white matter lesions (WML, n=140) and normal-appearing white matter (NAWM, n=53) using a Mann-Whitney U test. Then, we analyzed the differences between different subgroups of WML (periventricular lesions -PVL-, n=38, WM part of leukocortical lesions -WMLCL-, n=36, subcortical lesions -SCL-, n=66, and areas of “dirty white matter” -DWM-, n=15) by performing a Kruskal-Wallis test and a Mann-Whitney U tests for direct comparison. Bonferroni correction for multiple-testing was applied.

Results

CL exhibited lower MTsat (p<0.001), higher T1-rt (p<0.001) and MWF (p<0.01) than normal appearing cortical tissue. WML showed lower MTsat (p<0.001), higher T1-rt (p<0.001), and lower MWF (p<0.001) than normal appearing white matter. DTI-FA did not differ between CL/WML and NAWM/NAGM. MTsat values were lower in the PVL (p<0.001) and higher in the DWM (p<0.001) in comparison to all other lesion subgroups. T1-rt were higher in PVL (p<0.001) compared to the other lesion subgroups. MWF values were higher in DWM and SCL (p<0.01), not statistically different between PVL and WMLCL. DTI-FA values were lower in WMLCL in comparison to all other subgroups (p<0.01) and did not differ between the other categories.

Conclusions

Postmortem MRI metrics in WML/CL as well as in different subgroups of WML, are compatible with myelin damage and tissue destruction. Interestingly, MWF was higher in CL than in NAGM, which might correspond to a predominance of “myelin blistering” pathology in the cortex. Ongoing work aims to directly correlate our findings with detailed histopathological characterization including electron microscopy of myelin damage.

Collapse