Imaging Oral Presentation

FC03.02 - A step forward toward the fully automated assessment of the central vein sign

Speakers
  • T. Huelnhagen
Authors
  • M. Fartaria
  • O. Al-Louzi
  • T. Huelnhagen
  • L. Daboul
  • P. Maggi
  • D. Reich
  • C. Granziera
  • M. Bach Cuadra
  • J. Richiardi
  • P. Sati
  • T. Kober
Presentation Number
FC03.02
Presentation Topic
Imaging
Lecture Time
13:12 - 13:24

Abstract

Background

A deep-learning prototype method, called CVSNet, was recently introduced for the automated detection of the central vein sign (CVS) in brain lesions and demonstrated effective and accurate discrimination of multiple sclerosis (MS) from its mimics. However, this method solely considered focal lesions displaying the central vein sign (CVS+) or not (CVS), therefore requiring a manual pre-selection of the lesions to be evaluated by eliminating the so-called excluded lesions (CVSe) as defined by the NAIMS criteria. CVSe lesions may however play an important role in differential diagnosis. Moreover, extending the automated CVS classification to these lesions would facilitate the integration of CVSNet with existing MS lesion segmentation algorithms in a fully automated pipeline.

Objectives

To develop an improved version of the CVSNet prototype method able to classify all types of lesions (CVS+, CVS and CVSe).

Methods

Patients with an established MS or CIS diagnosis (RRMS 29; SPMS 10; PPMS 10; CIS 1; mean ± SD age: 50 ± 11 years; male/female: 23/27), and healthy controls (n=8; mean ± SD age: 41 ± 9 years; male/female: 5/3), underwent 3T brain MRI (MAGNETOM Skyra and MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany, or Achieva, Philips Healthcare, Best, Netherlands). Brain lesions were automatically segmented and manually corrected by a single rater. CVS assessment was conducted on FLAIR* images by two raters, according to the NAIMS guidelines, yielding 1542 CVS+, 1004 CVS−, and 1131 CVSe lesions. A convolutional neural network (CNN) based on the CVSnet architecture was trained with different configurations using 3021 samples (1261 CVS+, 847 CVS, and 913 CVSe) and evaluated in 656 unseen samples (281 CVS+, 157 CVS−, and 218 CVSe, from 13 patients) for final testing. The configurations relied on different combinations of the following channels as input: (i) FLAIR*, (ii) T2*, (iii) lesion mask, and (iv) CSF and brain tissue concentration maps obtained from a partial-volume estimation algorithm. Lesion-wise classification performance was evaluated for the different configurations by estimating the sensitivity, specificity, and accuracy for each lesion class.

Results

The results were similar across the different configurations. The best performance in the unseen testing set was obtained when all channels were used as input (sensitivity: 0.71, 0.73; specificity: 0.71, 0.81; and accuracy: 0.71, 0.79 for CVS+, CVS−, respectively). For CVSe, this approach achieved 0.52 sensitivity, 0.94 specificity, and 0.80 accuracy.

Conclusions

We introduced a modified CVSNet prototype method that can analyze the presence of the central vein for all types of brain lesions, enabling its integration with current MS lesion segmentation algorithms. This new feature will allow a fully automated assessment of the CVS in patients’ brains, speeding up the evaluation of CVS as a diagnostic biomarker for differentiating MS from mimicking diseases.

Collapse