Imaging Oral Presentation

FC03.03 - Depicting multiple sclerosis pathology at 160μm isotropic resolution by human whole-brain postmortem 3T magnetic resonance imaging

Speakers
  • M. Weigel
Authors
  • M. Weigel
  • P. Dechent
  • R. Galbusera
  • E. Bahn
  • G. Nair
  • L. Kappos
  • W. Brück
  • C. Stadelmann
  • C. Granziera
Presentation Number
FC03.03
Presentation Topic
Imaging
Lecture Time
13:24 - 13:36

Abstract

Background

Postmortem magnetic resonance imaging (MRI) of formalin-fixed healthy and diseased human brains with ultra-high spatial resolution has the great potential to depict tissue architecture in fine detail, allowing a deeper understanding of pathological processes. Whole-brain imaging is important since it provides neuroanatomic relationships, reference points across distant brain regions, and a comprehensive view of pathologies affecting the brain. However, ultra-high-resolution whole-brain postmortem MRI is challenging and has been so far almost exclusively performed at 7T with specialized hardware.

Objectives

To develop a 3D isotropic 160µm ultra-high-resolution imaging (URI) approach for human whole-brain ex vivo acquisitions on a standard clinical 3T MRI system. To explore the sensitivity and specificity of the approach to specific pathological features of multiple sclerosis (MS).

Methods

A fixed whole human brain from a patient with secondary progressive MS was investigated. Acquisitions were performed on a clinical 3T Siemens Prismafit MRI system with standard hardware components. URI is based on a gradient echo sequence similar to the 7T approach by Edlow et al. 2019. However, it allows to acquire an isotropic 160µm resolution with low hardware demands and to directly reconstruct the image data on the standard 3T MRI system. URI images display a strong, susceptibility-enhanced tissue contrast.

Results

The reconstructed URI images depicted with remarkable quality the diseased human MS brain at 3T field strength. URI allowed to distinguish fine anatomical details such as the subpial molecular layer, the stria of Gennari as well as some intrathalamic nuclei. Additionally, because of the unprecedented spatial resolution and contrast at 3T, URI permitted to easily identify the presence of subpial lesions, detailed features of intracortical lesions such the presence of incomplete/complete iron rims or patterns of iron accumulation in the entire lesion core in both cortical and white matter lesions (CLs/WMLs), lesions affecting the convoluted layers of the cerebellar cortex and nascent submillimetric CLs/WMLs.

Conclusions

URI provides a comprehensive microscopic insight into the whole-human brain at 3T through the micrometric resolution and a tissue-specific, susceptibility-enhanced contrast. We propose URI as an excellent approach to investigate microscopic brain changes of complex pathologies like MS.

Collapse