Pediatric MS Oral Presentation

PS07.04 - Fibre-specific white matter differences in children with pediatric acquired demyelinating syndromes compared to healthy children

Speakers
  • S. Bells
Authors
  • S. Bells
  • G. Longoni
  • T. Berenbaum
  • C. De Medeiros
  • S. Narayanan
  • D. Arnold
  • R. Marrie
  • A. Bar-Or
  • B. Banwell
  • D. Mabbott
  • E. Yeh
Presentation Number
PS07.04
Presentation Topic
Pediatric MS
Lecture Time
13:27 - 13:39

Abstract

Background

White matter (WM) microstructural changes occur in youth with multiple sclerosis (MS) and myelin oligodendrocyte glyoprotein (MOG)-associated disorders. While diffusion tensor imaging has been extensively used to characterize white matter, this method lacks microstructural and pathological specificity. ‘Fixel Based Analysis’ (FBA) statistically estimates changes in diffusion MRI connectivity that is specific to micro and macro-structure. WM damage that leads to less densely packed axons in a fiber bundle causes a decrease in fibre density (FD). If the number of axons is not reduced but occupies less area, then fibre cross-section (FC) will decrease. Last, if the density of axons within a fibre bundle and the area the bundle occupies are reduced, then fibre density and cross-section (FDC) will decrease.

Objectives

To use whole-brain FBA to measure differences in FD, FC, FDC in youth with demyelinating syndromes compared to healthy controls.

Methods

We evaluated group differences in the FBA metrics between 28 typically developing children (17F; age 15.0±2.6y), 19 children with MS (13F; 16.9±1.1y; disease duration (DD)=0.1-11.7y; expanded disability status scale(EDSS):median=1.5,range=0-4.5), and 11 children with MOG (8F;12.1±2.8y; DD=0.5-6.4y;EDSS:m=1.0,r=0-3). Multi-shell diffusion-weighted imaging of the brain was acquired with echo planar imaging on a 3T MRI scanner and was pre-processed to correct for distortions and movement. Whole-brain group FBA was performed on FD, FC and FDC to test differences between groups adjusting for age, sex, total intracranial volume, EDSS and DD (p<0.05, family-wise error (FWE) corrected).

Results

Participants with MS and MOG showed reduced FD, FC and FDC relative to typically developing children (FWE corrected p<0.05). Differences in FD were found within splenium, superior longitudinal fasciculus and optic radiations. MS patients had reduced FDC within the corticospinal tract and cerebellar peduncle compared to MOG patients. In participants with MS and MOG, decreased FD within the brain stem, cerebellar peduncles and corona radiata was associated with increased DD and EDSS.

Conclusions

Our preliminary findings showed that patients with demyelinating disorders display decreased axonal density and fibre bundle size in multiple WM tracts relative to typically developing children, which were related to clinical outcomes (EDSS, DD). These changes were more pronounced in MS compared to MOG participants in selected WM tracts.

Collapse