A. Maceski

University Hospital Basel and University of Basel Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research

Author Of 4 Presentations

Biomarkers and Bioinformatics Late Breaking Abstracts

LB01.03 - Neutrophil granulocyte markers in cerebrospinal fluid differentiate NMOSD and anti-MOG antibody associated disease from MS in acute disease phase

Speakers
Presentation Number
LB01.03
Presentation Topic
Biomarkers and Bioinformatics
Lecture Time
09:24 - 09:36

Abstract

Background

Background
Neuromyelitis optica spectrum disorders (NMOSD), anti-MOG-antibody associated disease (MOGAD) and multiple sclerosis (MS) may be difficult to differentiate. Detection of antibodies (Ab) targeting AQP4 and MOG is the diagnostic gold standard for the former two diseases, but has limited sensitivity and long laboratory turnaround time. Neutrophil granulocyte (NG) invasion of brain tissue is a key differentiator of NMOSD from MS, and has also been described in MOGAD.

Objectives

Objectives
To examine the capability to differentiate NMOSD/MOGAD from MS by the profile of secreted primary (elastase (Ela); myeloperoxidase (MPO)) and secondary (matrix metalloproteinase-8 (MMP-8); neutrophil gelatinase-associated lipocalin (NGAL)) neutrophil granule products in CSF.

Methods

Methods
CSF from patients with NMOSD (n=42), MOGAD (n=6) and RRMS (n=41) were evaluated for Ela, MPO, MMP-8, NGAL, and compared with markers of neuronal (NfL) and astrocyte (GFAP, S100B) damage by conventional ELISA or single molecule array assay. CSFs from healthy controls (HC) (n=25) served as reference. The association between biomarkers and disease groups was assessed in linear models. The kinetic change of biomarkers in function of time since last relapse was modelled across disease groups. ROC curves and area under the curve (AUC) were calculated to estimate the potential to differentiate NMOSD/MOGAD from RRMS in acute disease phase (≤20 days after relapse), as well as between acute NMOSD and MOGAD. The association of biomarkers with EDSS in acute NMOSD and RRMS was assessed by linear models and Spearman correlation.

Results

Results
All disease groups had elevated NfL vs HC (p<0.01), while GFAP levels were increased only in NMOSD (p<0.01). In acute NMOSD, all 4 NG markers were increased vs HC and acute RRMS (all p<0.01). In MOGAD, Ela, MPO and MMP-8 were increased vs HC (p<0.025) and acute RRMS (p<0.04). AUC in ROC analyses comparing acute NMOSD/MOGAD vs acute RRMS was high (Ela and NGAL: 0.91; MPO: 0.82; MMP-8: 0.81). In acute NMOSD, S100B and GFAP levels were increased in 89% (AUC=0.82) and 83% (AUC=0.80) of patients, respectively, vs median values of MOGAD. In acute NMOSD, EDSS scores correlated with all 4 NG markers (all p<0.01), and GFAP (p<0.031), but not with NfL and S100B (both p=0.21).

Conclusions

Conclusion
NG-specific biomarkers correlate with current EDSS scores in NMOSD. They show high sensitivity and specificity for rapid differentiation of acute NMOSD and MOGAD vs RRMS, similar to those reported for Ab against AQP4 and MOG. As the 4 NG biomarkers can be measured within few hours, as compared to an up to 2-week turnaround time for gold-standard cell-based assays for AQP4 and MOG, they could support individual decision making for acute therapeutic intervention. Further, increased S100B and GFAP levels differentiate acute NMOSD from MOGAD. NG markers may have a role in the diagnosis of Ab-negative NMOSD.

Collapse
Reproductive Aspects and Pregnancy Late Breaking Abstracts

LB01.06 - Interrupting disease modifying treatment for pregnancy in multiple sclerosis – effect on disease activity and serum neurofilament light chain

Speakers
Presentation Number
LB01.06
Presentation Topic
Reproductive Aspects and Pregnancy
Lecture Time
10:00 - 10:12

Abstract

Background

Pregnancy in MS typically goes along with reduced disease activity in the third trimester, followed by an increase in relapse frequency postpartum. Neurofilament light chain levels in serum (NfL) is a specific biomarker of neuroaxonal injury. Increased NfL levels are associated with relapses and MRI activity, while disease modifying treatment (DMT) response is reflected by a decrease of NfL.

Objectives

The objective of this study was to evaluate whether interrupting DMT due to pregnancy leads to increased NfL levels in MS.

Methods

We investigated prospectively documented pregnancies in the Swiss MS Cohort Study. Serum samples were collected 6- or 12-monthly and were analyzed by Simoa NF-light® assay. Uni- and multivariable mixed effect models were used to investigate associations between clinical characteristics and longitudinal NfL levels.

Results

We investigated 72 pregnancies in 63 relapsing MS patients (median age 31.4; disease duration 7.1 years; EDSS 1.5 at last visit before birth). In total, 433 samples were included: 92 during pregnancy or up to initiation of DMT but max. 9 months postpartum (pregnancy/post-partum period, pp), 167 prior to pp and 174 after the pp. Four patients had no DMT before, during and after pregnancy. DMT was continued in 13/72 pregnancies (>6 months during pregnancy: 6 rituximab/ocrelizumab, 4 natalizumab, 1 interferon-beta 1a i.m., 1 fingolimod and 1 glatiramer acetate). In univariable analysis, NfL levels were on average 22% higher during vs. outside the pp (β: 1.22, 95%CI: 1.10-1.35; p<0.001). We observed 29 relapses during the pp. In a multivariable analysis, relapses (within 120 days before serum sampling) were associated with 98% higher NfL (β: 1.98, 95%CI: 1.75-2.25; p<0.001); NfL was 7% higher per EDSS step increase (β: 1.07, 95%CI: 1.01-1.12; p=0.013) and on average 13% higher during vs. outside the pp (β: 1.13, 95%CI: 1.03-1.24; p=0.009). The effect of the pp on NfL disappeared after including DMT exposure (yes/no) at the sampling timepoint to the model (β:1.07, 95%CI: 0.97-1.18; p=0.178). Patients sampled during DMT had on average 12% lower NfL levels compared to patients without (β:0.88, 95%CI: 0.79-0.98; p=0.019).

Conclusions

Higher NfL levels were found during pp. This increase was independent of relapses suggesting increased subclinical disease activity during this time span. After including DMT into the model the effect of pregnancy on NfL disappeared: strategies allowing to continue DMT during pregnancy may be warranted.

Collapse
Biomarkers and Bioinformatics Oral Presentation

PS03.04 - Serum glial fibrillary acidic protein, but not S100B or neurofilament light chain predicts future relapses in neuromyelitis optica spectrum disorders

Speakers
Presentation Number
PS03.04
Presentation Topic
Biomarkers and Bioinformatics
Lecture Time
11:09 - 11:21

Abstract

Background

Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune mediated astrocytopathies. Glial fibrillary acidic protein (GFAP) and S100B, two astrocyte specific, and neurofilament light chain (NfL), a neuron specific biomarker are reported to be elevated in CSF and serum or plasma in acute phases of NMOSD. Serum NfL is a predictor of relapse activity in multiple sclerosis (MS). However, whether serum levels of NfL (sNfL), GFAP (sGFAP) or S100B (sS100B) levels can be prognostic biomarkers for future acute disease activity in NMOSD has not been elucidated.

Objectives

To test the prognostic potential of sGFAP, sS100B and sNfL levels during remission phase as biomarker for future relapses in NMOSD with aquaporin-4-IgG.

Methods

Median values of sGFAP, sS100B and sNfL were calculated from 47 serum samples from 18 patients in remission (>180 days after last relapse), followed for up to 10 years, and marked cut-off levels for “high” and “low” sGFAP (141.6 pg/mL), sS100B (8.6 pg/mL), and sNfL (33.9 pg/mL), respectively. Kaplan-Meier analysis, univariable and a multivariable (adjusted for age, sex, time from recent relapse and treatment) Cox-hazard model were used to compare the time to and hazard risk of the next relapse between the high and low groups for all three markers.

Results

Twenty-five first post-relapse/remission phase samples from these 18 patients (11 had one relapse, 7 had two relapses) were selected for analyses. Patients in the high sGFAP group experienced future relapses earlier than those with low sGFAP levels (median 3710 versus 922 days, p = 0.0047) and had higher risk of future relapses (unadjusted hazard ratio (HR): 5.6 [95% CI 1.5–21.0], p = 0.010; adjusted hazard ratio: 9.5 [95% CI 1.9–47.0], p = 0.0061). In contrast, high sS100B and sNfL levels were unable to identify patients at increased risk for relapses.

Conclusions

We illustrate the prognostic capacity of an astrocyte specific marker, sGFAP, for future relapses in stable NMOSD. This further supports the value of this blood biomarker for potential future clinical application in guiding and monitoring treatment response of patients with NMOSD. The failure of sNfL as a neuronal marker in this capacity for NMOSD may reflect the pathogenetic differences between this disease and MS. The failure of sS100B may result from its pharmacokinetic profile as a short-lived marker in acute NMOSD, but not in stable disease.

Collapse
Biomarkers and Bioinformatics Oral Presentation

PS09.05 - Value of serum neurofilament light chain levels as a biomarker of suboptimal treatment response in MS clinical practice

Abstract

Background

Serum neurofilament light chain (sNfL) reflects neuro-axonal damage and may qualify as a biomarker of suboptimal response to disease modifying therapy (DMT).

Objectives

To investigate the predictive value of sNfL in clinically isolated syndrome (CIS) and relapsing-remitting (RR) MS patients with established DMT for future MS disease activity in the Swiss MS Cohort Study.

Methods

All patients were on DMT for at least 3 months. sNfL was measured 6 or 12-monthly with the NF-light®assay. The association between sNfL and age was modeled using a generalized additive model for location scale and shape. Z-scores (sNfLz) were derived thereof, reflecting the deviation of a patient sNfL value from the mean value of same age healthy controls (n=8865 samples). We used univariable mixed logistic regression models to investigate the association between sNfLz and the occurrence of clinical events (relapses, EDSS worsening [≥1.5 steps if EDSS 0; ≥1.0 if 1.0-5.5 or ≥0.5 if >5.5] in the following year in all patients, and in those fulfilling NEDA-3 criteria (no relapses, EDSS worsening, contrast enhancing or new/enlarging T2 lesions in brain MRI, based on previous year). We combined sNfLz with clinical and MRI measures of MS disease activity in the previous year (EDA-3) in a multivariable mixed logistic regression model for predicting clinical events in the following year.

Results

sNfL was measured in 1062 patients with 5192 longitudinal samples (median age 39.7 yrs; EDSS 2.0; 4.1% CIS, 95.9% RRMS; median follow-up 5 yrs). sNfLz predicted clinical events in the following year (OR 1.21 [95%CI 1.11-1.36], p<0.001, n=4624). This effect increased in magnitude with increasing sNfLz (sNfLz >1: OR 1.41 [95%CI 1.15-1.73], p=0.001; >1.5: OR 1.80 [95%CI 1.43-2.28], p<0.001; >2: OR 2.33 [95%CI 1.74-3.14], p<0.001). Similar results were found for the prediction of future new/enlarging T2 lesions and brain volume loss. In the multivariable model, new/enlarging T2 lesions (OR 1.88 [95%CI 1.13-3.12], p=0.016) and sNfLz>1.5 (OR 2.18 [95%CI 1.21-3.90], p=0.009) predicted future clinical events (n=853), while previous EDSS worsening, previous relapses and current contrast enhancement did not. In NEDA-3 patients, change of sNfLz (per standard deviation) was associated with a 37% increased risk of clinical events in the subsequent year (OR 1.37 [95%CI 1.04-1.78], p=0.025, n=587).

Conclusions

Our data support the value of sNfL levels, beyond the NEDA3 concept, for treatment monitoring in MS clinical practice.

Collapse