F. La Rosa

École Polytechnique Fédérale de Lausanne

Author Of 2 Presentations

Imaging Oral Presentation

PS11.04 - Quantitative susceptibility mapping classifies white matter lesions with different myelin and axonal content and quantifies diffuse pathology in MS

Abstract

Background

Quantitative susceptibility mapping (QSM) identifies iron accumulation and myelin loss in smoldering white matter lesions (WMLs). Yet, QSM may be also used to provide a broader understanding of focal and diffuse MS pathology.

Objectives

To study QSM features across WMLs, to assess myelin and axonal loss in WMLs with different QSM features and to quantify QSM pathology in normal-appearing white and cortical grey matter (NAWM, NAGM).

Methods

Ninety-one MS patients (62 RRMS, 29 PMS) and 72 healthy controls (HC) underwent QSM, myelin water imaging (MWI) and multishell diffusion at 3T MRI. In WMLs, cortical lesions (CLs), NAWM and NAGM, we extracted mean QSM, myelin water fraction (MWF) and neurite density index (NDI). WMLs were classified into 5 groups according to their appearance on 3D-EPI QSM: (i) isointense; (ii) with hyperintense rim, Rim+ (iii); with hypointense rim relative to the lesion core, hypo Rim; (iv) hyperintense; (v) hypointense. Mann-Whitney and Kruskal-Wallis test with Dunn’s correction for multiple comparison were used to compare (a) lesion types and (b) specific lesions vs all other WMLs. Voxel-wise comparisons of NAWM QSM were performed using Threshold-Free Cluster Enhancement (TFCE) clustering. Cortical analysis of QSM NAGM and GM-HC was performed using FreeSurfer and compared using a General Linear model (GLM).

Results

Of 1136 WMLs in QSM maps, we detected: (i) 314 (27.6%), (ii) 183 (16.1%), (iii) 16 (1.41%), (iv) 577 (50.8%) and (v) 46 (4.05%) WML. All WML exhibited lower NDI than NAWM and WM-HC (P<0.0001). Isointense lesions exhibited higher NDI (P=0.0115) and MWF (P<0.0001) than other WMLs. Rim + and hyperintense lesions exhibited lower MWF than NAWM and WM-HC (P<0.0001). Rim + lesions showed lower MWF and NDI than other WML types (P<0.001). Hypo Rim+ lesions and hypointense lesions exhibited higher MWF than other WMLs (P=0.0006, P<0.05). Hyperintense lesions exhibited lower MWF than other WMLs types (P<0.01) except Rim+ lesions. TFCE and vertex-wise cortical surface analysis showed areas throughout the NA tissue, where QSM is either lower or higher compared to healthy tissue in HC and in PMS compared to RMS (P<0.01).

Conclusions

QSM is sensitive to diffuse and focal pathology with various myelin and axonal characteristics. We hypothesize that isointense WMLs show high repair activity, hypointense WMLs are remyelinated lesions and hyperintense WMLs are chronic inactive lesions. MRI-histopathology work is ongoing to confirm these findings.

Collapse
Machine Learning/Network Science Oral Presentation

PS16.04 - RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesions assessment in multiple sclerosis

Speakers
Presentation Number
PS16.04
Presentation Topic
Machine Learning/Network Science
Lecture Time
13:27 - 13:39

Abstract

Background

In multiple sclerosis (MS), perilesional chronic inflammation appears on in vivo 3T susceptibility-based magnetic resonance imaging (MRI) as non-gadolinium-enhancing paramagnetic rim lesions (PRL). A higher PRL burden has been recently associated with a more aggressive disease course. The visual detection of PRL by experts is time-consuming and can be subjective.

Objectives

To develop a multimodal convolutional neural network (CNN) capable of automatically detecting PRL on 3D-T2*w-EPI unwrapped phase and 3D-T2w-FLAIR images.

Methods

124 MS cases (87 relapsing remitting MS, 16 primary progressive MS and 21 secondary progressive MS) underwent 3T MRI (MAGNETOM Prisma and MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany). Two neurologists visually inspected FLAIR magnitude and EPI phase images and annotated 462 PRL. 4857 lesions detected by an automatic segmentation (La Rosa et al. 2019) without overlap with PRL were considered non-PRL. The prototype RimNet was built upon two single CNNs, each fed with 3D patches centered on candidate lesions in phase and FLAIR images, respectively. A two-step feature-map fusion, initially after the first convolutional block and then before the fully connected layers, enhances the extraction of low and high-level multimodal features. For comparison, two unimodal CNNs were trained with phase and FLAIR images. The areas under the ROC curve (AUC) were used for evaluation (DeLong et al. 1988). The operating point was set at a lesion-wise specificity of 0.95. The patient-wise assessment was conducted by using a clinically relevant threshold of four rim+ lesions per patient (Absinta et al. 2019).

Results

RimNet (AUC=0.943) outperformed the phase and FLAIR image unimodal networks (AUC=0.913 and 0.855, respectively, P’s <0.0001). At the operating point, RimNet showed higher lesion-wise sensitivity (70.6%) than the unimodal phase network (62.1%), but lower than the experts (77.7%). At the patient level, RimNet performed with sensitivity of 86.8% and specificity of 90.7%. Individual expert ratings yielded averaged sensitivity and specificity values of 76.3% and 99.4%, respectively.

Conclusions

The excellent performance of RimNet supports its further development as an assessment tool to automatically detect PRL in MS. Interestingly, the unimodal FLAIR network performed reasonably well despite the absence of a paramagnetic rim, suggesting that morphometric features such as volume or shape might be a distinguishable feature of PRL.

Collapse

Presenter Of 1 Presentation

Machine Learning/Network Science Oral Presentation

PS16.04 - RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesions assessment in multiple sclerosis

Speakers
Presentation Number
PS16.04
Presentation Topic
Machine Learning/Network Science
Lecture Time
13:27 - 13:39

Abstract

Background

In multiple sclerosis (MS), perilesional chronic inflammation appears on in vivo 3T susceptibility-based magnetic resonance imaging (MRI) as non-gadolinium-enhancing paramagnetic rim lesions (PRL). A higher PRL burden has been recently associated with a more aggressive disease course. The visual detection of PRL by experts is time-consuming and can be subjective.

Objectives

To develop a multimodal convolutional neural network (CNN) capable of automatically detecting PRL on 3D-T2*w-EPI unwrapped phase and 3D-T2w-FLAIR images.

Methods

124 MS cases (87 relapsing remitting MS, 16 primary progressive MS and 21 secondary progressive MS) underwent 3T MRI (MAGNETOM Prisma and MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany). Two neurologists visually inspected FLAIR magnitude and EPI phase images and annotated 462 PRL. 4857 lesions detected by an automatic segmentation (La Rosa et al. 2019) without overlap with PRL were considered non-PRL. The prototype RimNet was built upon two single CNNs, each fed with 3D patches centered on candidate lesions in phase and FLAIR images, respectively. A two-step feature-map fusion, initially after the first convolutional block and then before the fully connected layers, enhances the extraction of low and high-level multimodal features. For comparison, two unimodal CNNs were trained with phase and FLAIR images. The areas under the ROC curve (AUC) were used for evaluation (DeLong et al. 1988). The operating point was set at a lesion-wise specificity of 0.95. The patient-wise assessment was conducted by using a clinically relevant threshold of four rim+ lesions per patient (Absinta et al. 2019).

Results

RimNet (AUC=0.943) outperformed the phase and FLAIR image unimodal networks (AUC=0.913 and 0.855, respectively, P’s <0.0001). At the operating point, RimNet showed higher lesion-wise sensitivity (70.6%) than the unimodal phase network (62.1%), but lower than the experts (77.7%). At the patient level, RimNet performed with sensitivity of 86.8% and specificity of 90.7%. Individual expert ratings yielded averaged sensitivity and specificity values of 76.3% and 99.4%, respectively.

Conclusions

The excellent performance of RimNet supports its further development as an assessment tool to automatically detect PRL in MS. Interestingly, the unimodal FLAIR network performed reasonably well despite the absence of a paramagnetic rim, suggesting that morphometric features such as volume or shape might be a distinguishable feature of PRL.

Collapse