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Introduction
Identification of novel therapeutic targets and associated biomarkers is 
the first step in the drug development journey, and traditionally relies on 
deep understanding of the underlying biology, a process which is lengthy 
and non-scalable.  The advent of high-throughput screening methods and 
advanced machine learning (ML) tools enable rapidly uncovering novel 
therapeutic targets and biomarkers even where the biology is not yet well 
understood. 
Here we present the use of a supervised tree-based approach to predict 
cell line-drug sensitivity or resistance and to estimate which genomic 
features influence these the most. These features, specific mutated genes 
and combinations thereof, represent potential therapeutic targets of each 
screened drug. We evaluated our method’s performance on 8 drugs with 
well-established putative genomic targets and then employ the method 
on the entire set of CancerRx dataset. For the evaluation set we show that 
in addition to the known target, other genomic features were identified 
for most of the drugs evaluated, including some not previously reported. 
These may represent additional novel targets or biomarkers of sensitivity 
or resistance, to potentially extend benefit to more patients or to better 
select patients most likely to benefit, respectively.

Methodology Outline

Data acquisition: Cell-line genomic profile data from Sanger institute’s Cell 
Model Passports website was represented as a matrix of 1357 cell lines vs. 
298 cancer-related genes, indicating the mutational status (WT/MT) of the 
gene in each cell-line. Cell-line drug sensitivity data of  IC50 values 
transformed into z-scores, was acquired from the CancerRX GDSC1 dataset 
of 945 cell-lines tested across 345 compounds. 
Model: Our ML approach was trained to predict the sensitivity of all cell-
lines to each drug. We used the XGBoost package to implement a Gradient 
Boosting Decision Tree (GBDT) machine learning algorithm. 
Training & validation: The input to our model is the cell-lines genomic 
profile matrix and the response of each cell-line to the given drug. We 
randomly selected 80% of the cell-lines to train the model and used the 
remaining 20% for model validation. We repeated sample selection and 
model training 200 times to correct for a bias caused by the scarcity of 
sensitive cell lines. 
Feature importance: To estimate the effect of each genomic feature on 
the predicted drug response we use SHAP values (denoted as 𝟁), which 
are calculated per cell-line and genomic feature and measure the 
difference in prediction between a model trained with the feature and in 
its absence. A negative/positive 𝟁 value indicates a feature that 
contributes to the sensitivity/resistance of the cell-line to the drug, 
respectively. The further from 0 the 𝟁 value is, the larger the feature’s 
effect on the model’s prediction. 
Detecting potential biomarkers: A potential biomarker is a gene that 
shows a large differential contribution between its mutated and WT state 
for a given drug. Thus, for each genetic feature we compute two values:: 
𝟁MT = 𝑚𝑒𝑎𝑛(𝟁(𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 𝑙𝑖𝑛𝑒𝑠)) and  𝟁WT

= 𝑚𝑒𝑎𝑛(𝟁(𝑊𝑇 𝑐𝑒𝑙𝑙 𝑙𝑖𝑛𝑒𝑠)). Our potential biomarker score is calculated 
for every gene as: 

𝟁diff = 𝟁𝑀𝑇 −𝟁WT
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Figure 2. Results on validation set. Our algorithm was run on 8 drugs with known biomarkers, to validate the results. In all cases the method detected the known genomic feature(s) or 
pathway, with the correct directionality (resistance/sensitivity), as indicated by the green colored bars. Light blue bars indicate genes for which there is some evidence in the literature, 
and gray bars indicate novel findings of the algorithm for which there is little to no other evidence in the literature. Shown are the top 3 genes for each drug. The biomarkers with the 

highest absolute 𝟁diff for each drug are usually direct targets of the relevant drug. These are followed by additional biomarkers that can often be linked to the pathway or have other 
supporting evidence for the response we observe. Dabrafenib: BRAF is the direct target, while TP53 and Notch1 mutations were shown to lead to BRAF/MAPK inhibitor resistance. 
Selumetinib: the MAPK pathway is its direct target and also related to increased MSR1 expression, explaining MSR1 sensitivity to the drug. PD0325901: a MEK inhibitor, MAPK being its 
target pathway. RB1 mutation is associated with resistance to the drug. Quizartinib: FLT3 is its direct target. Gefitinib: EGFR is its direct target and KRAS is known to cause resistance to 
the drug. STIP1 is a co-chaperone with Hsp90, which is important for the stability and activity of EGFR, consistent with STIP1 sensitivity to Gefitinib. Palbociclib is a CDK inhibitor. The 
MAPK pathway is known to enhance CDK4/6 activity, in-line with Palbociclib sensitivity in a MAP2K1 mutant background. RB1 mutations are also associated with resistance to 
Palbociclib. Additionally, It was shown that TBX3 deficiency leads to decreased CDK4, which can explain TBX3-related resistance to Palbociclib. Olaparib: BRCA2 is the direct target. ATM  
has been known to be involved in DNA damage repair and considered as a potential target of PARP inhibitors. Nutlin-3a target is MDM2 which binds TP53 and causes its degradation. It 
does not affect a mutated TP53. Thus, TP53 is a biomarker for drug resistance.
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Here we present a novel approach to explore the space of potential drug targets and biomarkers. We 
validate our approach on a set of 8 drugs with known targets and biomarkers for drug sensitivity 
and/or resistance and show our ability to detect them by calculating 𝟁diff values per drug and 
genomic feature. We also identify additional genomic features, some previously unreported. 
A large-scale application of this approach yields many additional findings, some of which were 
known, and some require further investigation. An interesting observation is that while many drugs 
such as MAPK inhibitors have a similar target, they still have a distinct sensitivity profile to the set of 
300 genes. 
We note that the presented methodology is an initial proof of concept. We plan to further develop it 
in several directions: first, by expanding our genomic feature set to differentiate between different 
mutation types, e.g., mutation classes, fusions, CNAs and other onco-relevant aberrations. Second, 
We aim to explore alternative definitions to genomic features, e.g., genetic families, pathways or 
other connections. We believe our approach has the potential to highlight non-trivial drug-gene 
relationships, to aid in the detection of novel therapeutic biomarkers for cancer, and  thus to provide 
indications and guidance towards a better selection of patients for specific drug treatment.

Figure 3. To explore the space of potential drug-target combinations, we ran the algorithm on the set of 346 drugs present in the CancerRx GDSC1 

dataset. The heatmap presents the 𝟁diff value of each genomic feature (columns) for every drug (rows, color-coded according to drug pathway). Rows 

and columns were hierarchically clustered by 𝟁diff distance similarity using the Bray-Curtis metric . Also shown are the column-wise sum (for each gene, 
summing all drugs), highlighting the most sensitive and resistant biomarkers. The zoom-ins indicate groups of drugs for which one or more genomic 
feature were found to correlate with drug sensitivity (purple) or resistance (green). 

Figure 1. Outline of 
methodology. 
(A) Data Acquisition 
process. 
(B) Sample selection and 
training of GBDT model, 
repeated 200 times. 

(C) SHAP (𝟁) based 
feature importance
calculation (D) selection of 
genomic features that 
most influence drug 
sensitivity or resistance by 
𝑆𝐻𝐴𝑃𝑑𝑖𝑓𝑓. The selected 

features constitute the set 
of potential biomarkers.
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