

Comprehensive molecular analysis of tissue samples from cancer patients: Evaluation of a novel all-in-one NGS strategy for diagnosis and theranostic J. Dardare¹, A. Witz¹, M. Husson², J.-L. Merlin¹, P. Gilson¹, A. Harlé^{1*}

¹ Université de Lorraine, CNRS UMR 7039 CRAN, Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France. ² Département de Biopathologie, Institut de Cancérologie de Lorraine - Alexis Vautrin, Vandoeuvre-les-Nancy, France * Corresponding author : j.dardare@nancy.unicancer.fr

Background

RAN

DNAseq, RNAseq, and determination of microsatellite instability (MSI) are now routine analyses in precision medicine for the management of patients with cancer. Analyzing DNA/RNA requires reliable assays often performed in two separate runs. This can be challenging considering the limited quantity of total nucleic acids (TNA) extracted from some FFPE samples. Sequential approaches (i.e. DNAseq followed by RNAseq) increase the turnaround time and costs, delaying treatment. Here, we evaluated a novel NGS approach developed by Invitae (San Francisco, USA) which allows the detection of single nucleotide variants (SNVs), indels, MSI and structural rearrangements in one single NGS run using TNA extracted from FFPE tissue.

Methods

A total of 24 FFPE samples from patients with various cancers previously characterized using conventional methods: DNAseq, RNAseq, PCR, IHC or FISH were included. Selected samples were qualified, and the tumour cell content evaluated by a senior pathologist. After macrodissection, TNAs were extracted with ReliaPrep[™] FFPE gDNA Miniprep System from Promega (Madison, USA) and libraries were prepared using in parallel VariantPlex (DNA) and FusionPlex (RNA) kits from Invitae. One single NGS run was performed with NextSeq 500/550 High Outpout v2 kit from Illumina (San Diego, USA) (Figure 1). Kits were designed to detect fusions without a priori knowledge of the gene fusion partner, MSI, and variants using a panel of 156 cancer-relevant target genes (71 DNA, 136 RNA).

Disclosure: All kits and reagents were provided free of charge by Invitae

Results				Methods comparison					
The single equantity of Among 9	extraction of RNA and Dependent of RNA and Dependent of RNA and Dependent of RNA and Dependent of RNA and Strevious	of TNA allowed su ONA to perform th SNVs/indels and	fficient quality and ne all-in-one NGS. 11 MSI samples			Conventional methods	Conventional methods concordance	Sensibility	Specificity
identified approach c	by orthog	jonal methods, all (100%) (Tabl	all-in-one NGS e 1). Among 12	VariantPlex	MSI Status	PCR, NGS, IHC	100%	100%	100%
fusions det	tected by	the reference m	nethods, 11 were		Variants	NGS	100%	100%	100%
fusion miss	ed by NGS	was scored low	(1+) by IHC which	FusionPlex	Fusions	RNAseq	91,7%	91,7%	92,3%
analyses ar fusion is a f negative res	re conducte alse positiv sult by all-ir	ed to determine v result obtained n-one NGS.	whether the ROS1 by IHC, or a false	Fusions detection with FusionPlex Table 2: FusionPlex analyses					
Table 1: VariantPlex analyses				Conventional					
Gene	Variant	Expected VAF %	Observed VAF %	method	Expected fusions		Observed fu	Observed fusions	
		(NGS)	(VariantPlex)		BRAF exon	11 - KIAA1549 exon 2	I6 BRAF exon 11 - KIAA	1549 exon 16	1
BRAF	V600E	28,2	29,32		BRAF exon	9 - KIAA1549 exon 1	5 BRAF exon 9 - KIAA	BRAF exon 9 - KIAA1549 exon 15	
SMAD4	R497H	25	38,6		EML4 ex	on 2 - ALK exon 20	EML4 exon 2 - ALK exon 20		1
CTNNB1	T41I	25	40,41						· · · · · · · · · · · · · · · · · · ·
ESR1	S450A	12,7	11,11		BRAF exon	11 - KIAA1549 exon1	3 BRAF exon 11 - KIAA	BRAF exon 11 - KIAA1549 exon13	
KRAS	G12A	20,7	21,14		BRAF exon	9 - KIAA1549 exon 1	6 BRAF exon 9 - KIAA	1549 exon 16	2
AKT1	E17K	47	55,56	IHC		ALK	EML4 exon 13 - A	EML4 exon 13 - ALK exon 20	
KRAS	G13D	17,5	22,01			ROS1	CD74 exon 6 - ROS1 exon 34		1
TP53	Q192R	31,8	21,58			ROS1			
PIK3CA	Q546R	22	7,46			ΔΙΚ	FMI 4 AVON 6 - AI	K exon 20	 1
Variants were previo	ously detected in I	DNASeq with NGS using SOP with NGS is compared with VA	HiA Solid Tumor Solution (STS).		Fusions were pr	reviously detected in RNASeq with NGS Archer FusionPlex Lung and in IHC			

Conclusion

Novel, all-in-one NGS approach from Invitae shows promising results by comprehensively detecting SNVs, indels, MSI and structural variants. Analyses of DNA and RNA using the novel NGS strategy improves the overall turn-around-time and cost-effectiveness. This can potentially aid clinicians and patients to take timely decisions regarding treatment modalities.

