15P: FGFR3-TACC3 fusion (F) as an acquired resistance mechanism following treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) and a suggested novel target in advanced non-small cell lung cancer (aNSCLC).

Ari Raphael^{a,c}, Elizabeth Dudnik^{b,c}, Dov Hershkovitz^{d,c}, Suyog Jain^e, Lior Soussan-Gutman^f, Taly Ben-Shitrit^f, Hovav Nechushtan^g, Nir Peled^h, Abed Agbaryaⁱ On behalf of the Israel Lung Cancer Group

^aDepartment of Oncology, Tel-Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6971028, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medical Centers, Tel-Aviv 6423906, Israel; ^bLung Cancer Service, Assuta Medi Sourasky Medical Center, Tel-Aviv 6423906, Israel; ^eGuardant Health Asia Middle East and Africa, Fusionopolis Link 138543, Singapore; ^fRhenium Oncotest Ltd, Modi'in-Maccabim-Re'ut 717704, Israel; ^eGuardant Health Asia Middle East and Africa, Fusionopolis Link 138543, Singapore; ^fRhenium Oncotest Ltd, Modi'in-Maccabim-Re'ut 717704, Israel; ^eGuardant Health Asia Middle East and Africa, Fusionopolis Link 138543, Singapore; ^fRhenium Oncotest Ltd, Modi'in-Maccabim-Re'ut 717704, Israel; ^eGuardant Health Asia Middle East and Africa, Fusionopolis Link 138543, Singapore; ^fRhenium Oncotest Ltd, Modi'in-Maccabim-Re'ut 717704, Israel; ^eGuardant Health Asia Middle East and Africa, Fusionopolis Link 138543, Singapore; fRhenium Oncotest Ltd, Modi'in-Maccabim-Re'ut 717704, Israel; eog University of Jerusalem, POB 12000, Jerusalem 91120, Israel; ^hDepartment of Oncology, Bnai Zion Medical Center, Haifa 31048, Israel

BACKGROUND

- Fusion between *FGFR3* and *TACC3* represents a rare acquired resistance mechanism following treatment with EGFR TKIs.
- Data regarding its prevalence and therapeutic implication is limited (Ref. 1-3).

OBJECTIVES

- *FGFR1/2/3* fusion prevalence in aNSCLC de novo and
- *FGFR1/2/3* fusion prevalence in aNSCLC as a resistant mechanism following EGFR TKIs in EGFR mutant (EGFR M) aNSCLC;
- Activity of the EGFR TKI+FGFR TKI combination following progression of EGFR TKIs in *EGFR* M aNSCLC.

METHODS

- Retrospective analysis
- aNSCLC);
- of *de novo FGFR1/2/3* fusions;

Figure 2. Prevalence of co-existing *EGFR* activating mutations in the patients with aNSCLC and FGFR3-TACC3 fusions.

Figure 1. *FGFR2/3* fusion subtypes distribution in aNSCLC.

• Guardant Health (GH) de-identified electronic database (ED) (11/2016-07/2021) - prevalence of *FGFR2/3* fusions with and without co-existing EGFR mutations (assuming co-existing mutations reflect the status of acquired *FGFR* fusion-driven resistance to EGFR TKIs in EGFR M

• aNSCLC ED of TASMC (06/2020-06/2021) - prevalence

• Case-series of patients with *EGFR* M aNSCLC progressing on EGFR TKIs and developing an FGFR3-TACC3 fusion selected from Davidoff Cancer Center (DCC) and Oncology Department, Bnei-Zion hospital (BZ) ED (04/2014-04/2021, n=3) - clinico-pathological characteristics, systemic therapies and outcomes.

RESULTS

- respectively.
- L858R, 31%, L861Q, 3%) (Figure 2).
- 0.62%).
- response for 4 and 2+ months, respectively (Figure 3).

Table 1. Demographic and clinico-pathological characteristics of patients with *EGFR* M aNSCLC progressing on EGFR TKIs and developing an *FGFR3-TACC3* fusion.

Case	Sex	Age, years	Tumor histology	Smoking history	EGFR M subtype	Treatment history: agent (PFS)	FGFR3- TACC3 fusion MAF, %	Concurrent alterations, MAF/VAF, %
#1	F	59	Adenoca	Never- smoker	L858R	Gefitinib (7 mo), osimertinib (13 mo), carboplatin/pemetrexed (6 mo)	0.3	EGFR L858R, 33.4, PIK3CA E545K, 47.5, CCND1 amplification, CDK4 amplification, KRAS amplification, MYC amplification
#2	Μ	84	Adenoca	Never- smoker	E746_A750del	Osimertinib (11 mo)	0.04	EGFR E746_A750del, 1.3, TP53 Y163C, 0.4
#3	F	63	Adenoca	Never- smoker	L747_A750delinsP	Gefitinib (52 mo), osimertinib (14 mo)	0.07	Gardant360: <i>EGFR</i> L747_A750delinsP, 0.5, <i>PIK3CA</i> V344G, 1.3 Tempus xT: <i>EGFR</i> L747_A750delinsP, 14.4, <i>EGFR</i> p. C797S, 3.6, <i>PIK3CA</i> V344G, 15.9

• In GH ED, the prevalence of *FGFR2* and *FGFR3* fusions were 0.02% and 0.26%,

• Of *FGFR3* fusions, 99.3% were *FGFR3-TACC3* (Figure 1).

• Of *FGFR3-TACC3* fusions, *EGFR* mutations co-existed in 23% (exon 19 del, 66%;

• In TASMC, 1 case of *de novo FGFR3-TACC3* fusion was detected (prevalence,

• Of 3 patients with *FGFR3-TACC3* fusions following progression on EGFR TKIs (2) females, age 59-84y, EGFR mutation type: E746_A750del, L858R,

L747_A750delinsP) (Table 1), 2 patients received gefitinib/erdafitinib and osimertinib/erdafitinib combinations with a disease stabilization and a partial

Figure 3. FDG-PET/CT images before (A) and during (B) therapy with osimertinib+erdafitinib in a patient with an EGFR M aNSCLC and FGFR3-TACC3 fusion following progression on osimertinib. Shrinkage of a retro-caval lymph node with a reduction in FDG-avidity, stable lung metastasis with a reduction in FDGavidity, sclerozation of a D3 lytic metastasis with a reduction in FDG-avidity.

Erdafitinib 1

CONCLUSIONS

References:

- Cancer. 2017; 111: 61-64.

Email: <u>Arir@tlvmc.gov.il</u>

FGFR3-TACC3 fusions are the most common FGFR fusion subtype in aNSCLC.

Up to 23% of FGFR3-TACC3 fusions in aNSCLC are associated with a co-existing EGFR M, possibly representing an acquired resistance following treatment with EGFR TKIs.

In this clinical scenario, combination of EGFR TKIs and FGFR TKIs represents a promising treatment strategy.

1. Ou SI, Horn L, Cruz M, et al. Emergence of FGFR3-TACC3 Fusions as a Potential By-pass Resistance Mechanism to EGFR Tyrosine Kinase Inhibitors in EGFR Mutated NSCLC Patients. Lung

. Bahleda R, Italiano A, Hierro C, et al. Multicenter Phase I Study of Erdafitinib (JNJ-42756493), Oral Panfibroblast Growth Factor Receptor inhibitor, in Patients with Advanced or Refractory Solid Tumors. Clin Cancer Res. 2019; 25(16): 4888-4897.

3. Haura EB, Hicks JK, Boyle TB. Erdafitinib Overcomes FGFR3-TACC3-Mediated Resistance to Osimertinib. J Thorac. Oncol. 2020; 15(9): E154-E156.

Corresponding author: Ari Raphael