

ESMO ADVANCED COURSE ON LUNG CANCER IN IMMUNOTHERAPY

Biomarkers

John Haanen MD PhD

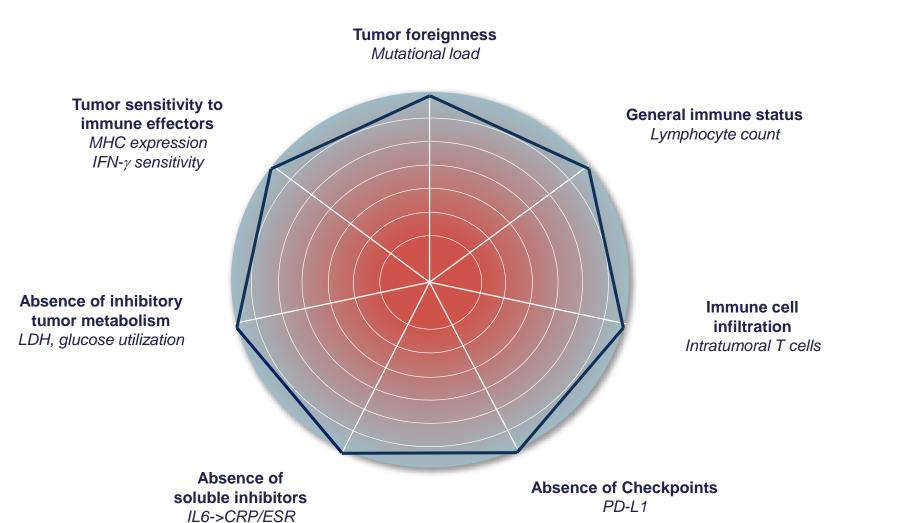
Zürich, 3-4 July 2019

Netherlands Cancer Institute, Amsterdam

DISCLOSURE OF INTEREST

I have provided consultation, attended advisory boards, and/or provided lectures for: Amgen, AZ/Medimmune, Bayer, BMS, GSK, Ipsen, Merck Serono, MSD, Novartis, Pfizer, Roche/Genentech, Sanofi, Seattle Genetics for which NKI received honoraria

I am on the **SAB** of **AIMM, Celsius Therapeutics, Immunocore and Neon Therapeutics.** Financial compensation goes to NKI


Through my work NKI received grant support from Bayer, BMS, MSD, Novartis, Neon Therapeutics, Pfizer

The Cancer Immunogram

Describing the state of Cancer - Immune interaction

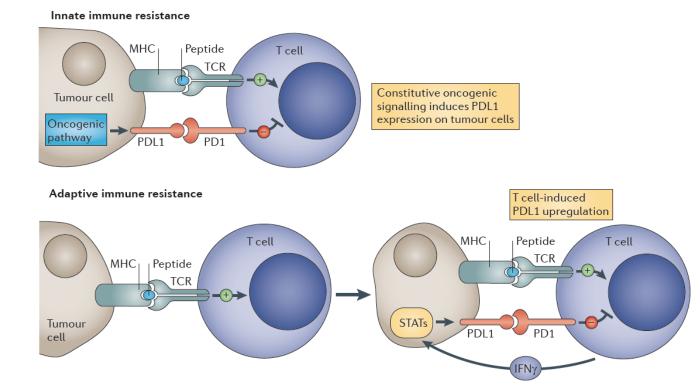
ESV0

Solid predictive biomarkers of response or resistance to IO treatment are lacking

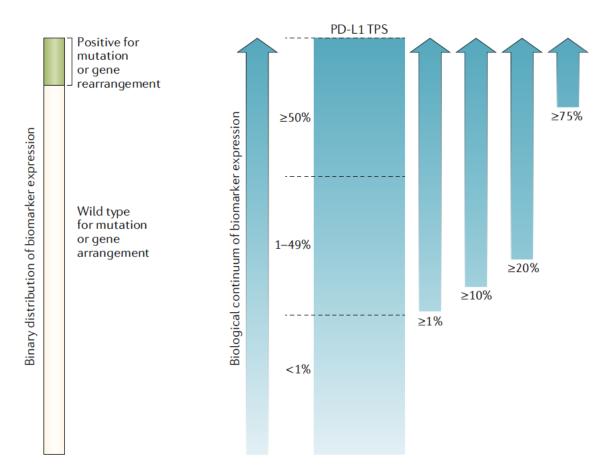
What do we have so far?

- PD-L1 IHC
- Tumor Mutational Burden (WES/WGS or targeted panel seq)
- TIL (IHC)
- Gene Expression Profiling

Solid predictive biomarkers of response or resistance to IO treatment are lacking


What do we have so far?

- PD-L1 IHC
- Tumor Mutational Burden (WES/WGS or targeted panel seq)
- TIL (IHC)
- Gene Expression Profiling



PD-L1 on human tumor cells mediates T cell inhibition

Categorical vs continuous biological variable as predictive biomarker of therapeutic benefit

Five-drug PD-L1 assay trial-validated combinations

Drug	Company	PD-L1 Diagnostic Ab Clone	Staining Platform	Clinically Relevant Cutoffs ^a
Nivolumab	Bristol-Myers Squibb	28-8 (Dako)	Dako Link 48	TC \geq 1%, 5%, and 10%
Pembrolizumab	Merck/Merck Sharp and Dohme	22C3 (Dako)	Dako Link 48	TC \ge 1% and 50%
Atezolizumab	Genentech/Roche	SP142 (Ventana)	Ventana BenchMark ULTRA	TC \geq 1%, 10%, and 50% IC \geq 1%, 5%, and 10%
Durvalumab	AstraZeneca	SP263 (Ventana)	Ventana Benchmark	TC ≥ 25%
Avelumab	Pfizer/Merck Serono	73-10 (Dako)	Dako Link 48	TC \geq 1%, 50%, and 80%

^aVariable according to trials and line of therapy.

Modified with permission from Tsao et al.⁹

PD-L1, programmed death ligand 1; Ab, antibody; TC, tumor cells by percentage staining for PD-L1; IC, percentage of tumor area infiltrated by PD-L1-positive immune cells.

PD-L1 as a Biomarker: A summum in complexity

 Inter and intratumor heterogeneity • Epitope stability • Inducible and dynamic (IFN, post-treatment) • Distribution (patchy versus diffuse) • Cell type (immune cell versus tumor versus both) • Different antibodies and platforms • Location (membrane versus cytoplasm) • Different thresholds for expression • Interobserver readability Expression of PD-L1 is heterogeneous¹ Abs are not identical: >25% discordant^{1,6,7} 100000 Discordant Challenges 10000 Surrounding 8 6% SP142 1000 **Biomarker**

Logistics: Tissue^{1,8,9}

Concordant positive

E1L3N

47 6%

100

Concordant negativ

1000

25.8%

18.0%

100 000

10000

- Interval between tissue and treatment (archived versus fresh)
- Primary versus metastatic disease
- Some circumstances not amenable to obtaining any tissue

IFN = interferon; PD-L1 = programmed death ligand 1.

1. McLaughlin J et al. JAMA Oncol. 2015 doi: 10.1001/jamaoncol.2015.3638. [Epub ahead of print]. 2. Heskamp S et al. Cancer Res. 2015. [Epub ahead of print]. 3. Pardoll DM. Nat Rev Cancer. 2012;12:252-264. 4. Wilson BE et al. J Immunol Methods. 1991;139:55-64. 5. Phillips T et al. Appl Immunohistochem Mol Morphol. 2015;23(8):541-549. 6. Rimm D et al. Breast Cancer Res Treat. 2014;147(2):457-458. 7. Velcheti V et al. Lab Invest. 2014;94(1):107-116. 8. Check W. Cap Today. 2010. 9. Warth A et al. Recent Results Cancer Res. 2015;199:71-84. Courtesy of Martin reck

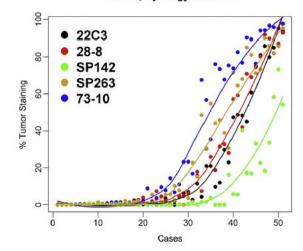

PD-L1 Immunohistochemistry: Results from the Blueprint 2 project

Table 1. Reliability (Intraclass Correlation Coefficient) ofScoring PD-L1 Expression on Tumor Cells among AllPathologists (Excluding the Trainer) for All Cases and NSCLCBiopsy Samples/Resected Cases

	Glass Slide Scoring		Digital Scoring		
Assay	All Cases	NSCLC Tissue Only	All Cases	NSCLC Tissue Only	
22C3	0.89	0.88	0.91	0.91	
28-8	0.92	0.94	0.86	0.88	
SP-142	0.88	0.86	0.80	0.84	
SP-263	0.89	0.92	0.90	0.93	
73-10	0.93	0.95	0.91	0.93	
All assays	0.86	0.89	0.91	0.93	

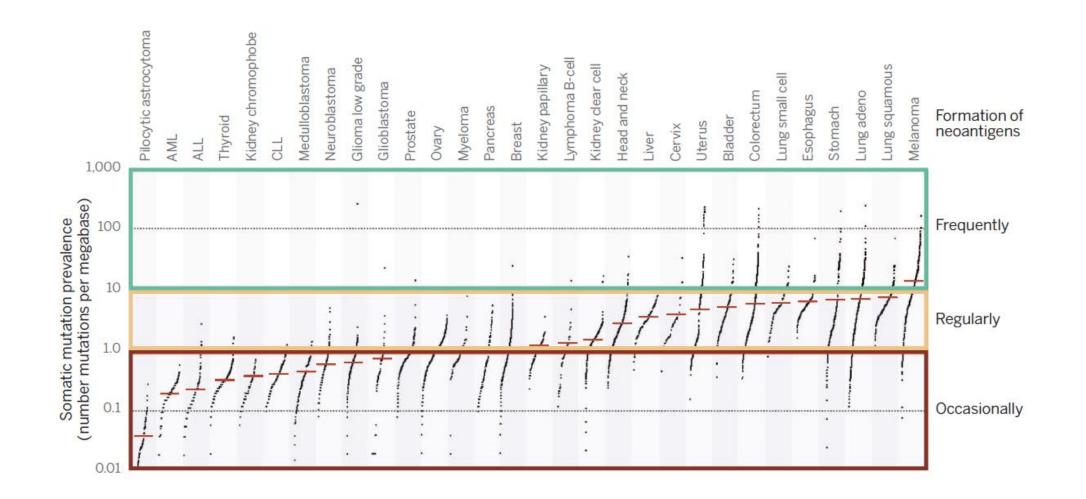
NSCLC, Cytology excluded

PD-L1, programmed death ligand 1.

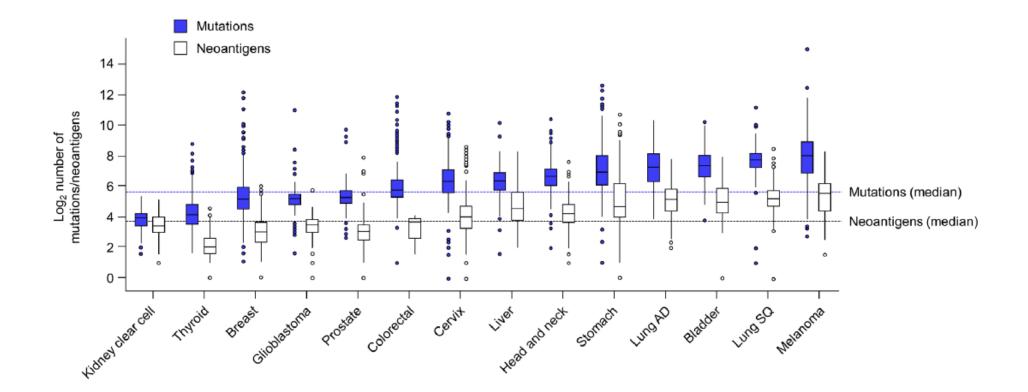
Potential explanations why PD-L1 expression might not predict benefit from PD-1/PD-L1 inhibition

Hypothesis	Evidence	Potential explanations
PD-L1 expression apparently not necessary	PD-L1 absent by IHC but clinical benefit seen from inhibition of PD-1 or PD-L1	 Spatial and/or temporal variability in PD-L1 expression within tumour (sampling error) Incomplete sensitivity of IHC in the detection of PD-L1, with variation between assays (false-negative result) PD-L2, the alternative ligand for PD-1, could provide a bypass mechanism for immunosuppression, leading to responses of PD-L1⁻ tumours to anti-PD-1 antibodies, although in theory, not to anti-PD-L1 antibodies
PD-L1 expression apparently not sufficient	PD-L1 present by IHC but no clinical benefit from inhibition of PD-1 or PD-L1	 Elevation in PD-L1 expression for reasons other than in response to a primed immune attack (for example, intrinsic induction in some oncogene-addicted NSCLCs) Engagement of other immune checkpoints in addition to the PD-1– PD-L1 axis and/or immune suppression or deficiencies with different causes The measured extent of PD-L1 positivity (a continuous variable) might be insufficient for a response to PD-1 or PD-L1 inhibition, reflecting substantial heterogeneity in the underlying tumour biology (including neoantigen profiles and mechanisms of immune escape)

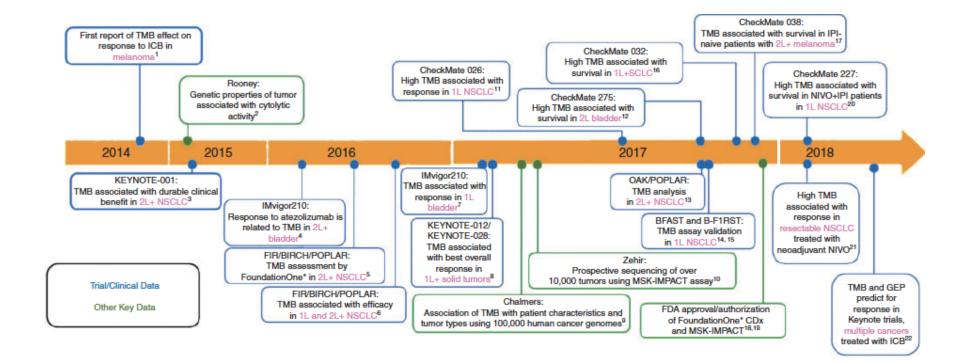
- PD-L1 IHC is a validated and approved biomarker
- It is the only 'drug specific' biomarker
- Clinically it can be reliably delivered
- It does enrich for treatment benefit
- But it is not perfect
- Implementation can be complicated


Solid predictive biomarkers of response or resistance to IO treatment are lacking

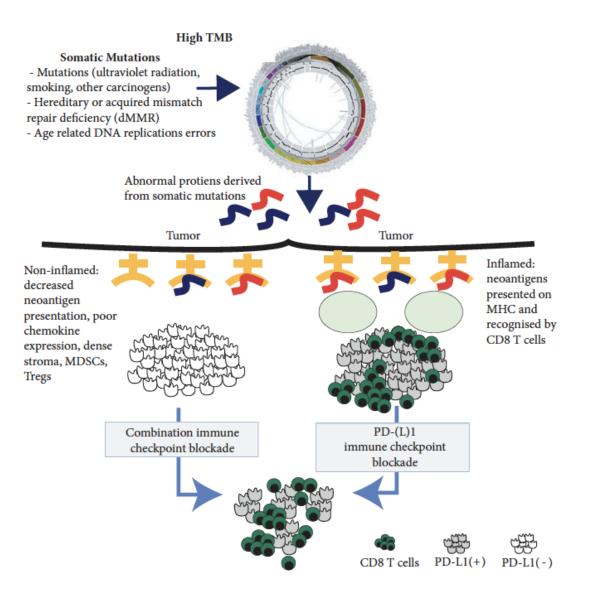
What do we have so far?


- PD-L1 IHC
- Tumor Mutational Burden (WES/WGS or targeted panel seq)
- TIL (IHC)
- Gene Expression Profiling

Estimate of the neoantigen repertoire in human cancers

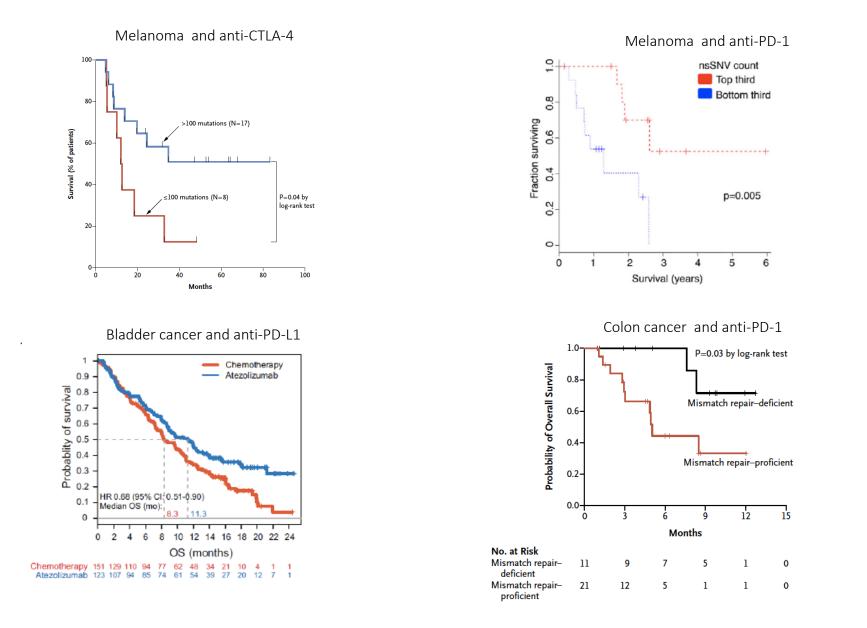


Comparison between mutational load and neoantigen load: Not a 1:1 relationship per se



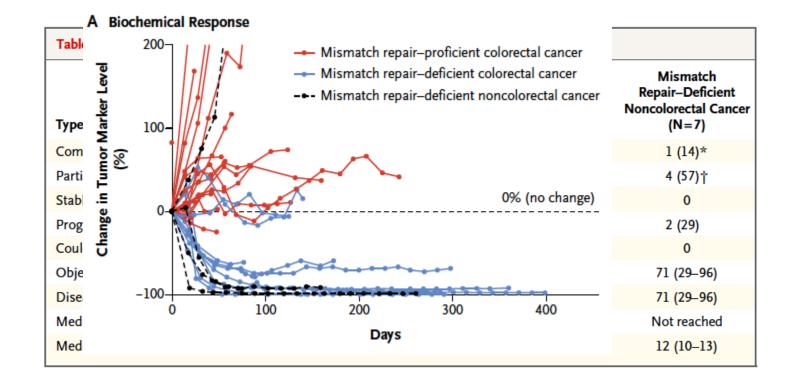
Evolvement of TMB over time as a potential biomarker of response to immunotherapy

Connection between TMB, neoantigens and immunotherapy


Chan et al. Ann Oncol 2019

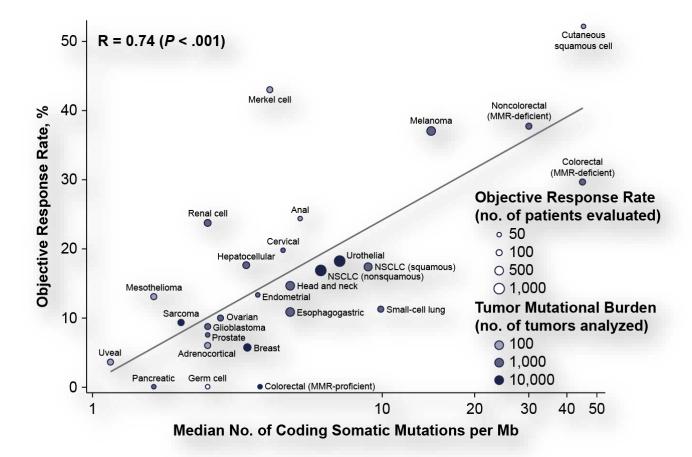
Clinical evidence demonstrating TMB as a biomarker for response to immunotherapy

Immunotherapy agent and tumour						
type	Study/trial*	TMB assay used	Type of benefit			
Nivolumab						
NSCLC (1 L)	CheckMate 026 ⁵²	WES	ORR, PFS			
NSCLC	Flatiron Health ¹¹⁷	Foundation CGP panel	OS			
Melanoma (1 L or 2 L)	CheckMate 038 ²²	WES	ORR, OS, PFS			
Melanoma	CheckMate 064 ²³	WES	ORR, OS			
Bladder	CheckMate 275 ⁸³	WES	ORR, OS, PFS			
GBM	Bouffet <i>et al</i> , 2016 ¹¹⁸	WES	DRR			
Ipilimumab						
Melanoma	Van Allen <i>et al</i> , 2015 ¹¹⁹	WES	CBR			
	Snyder <i>et al</i> , 2014 ⁸⁶	WES	CBR, OS			
Nivolumab and ipilimumab in combination	n					
NSCLC (1 L)	CheckMate 012 ³⁵	WES	ORR, DCB, PFS			
NSCLC (1 L)	CheckMate 227 ^{†8}	FoundationOne CDx	ORR, PFS			
NSCLC (1 L)	CheckMate 568 ⁹	FoundationOne CDx	ORR			
SCLC (2 L)	CheckMate 032 ⁸⁴	WES	ORR, OS, PFS			
Pembrolizumab						
NSCLC (1 L)	KEYNOTE-001 ³⁶	WES	ORR, DCB, PFS			
CRC	Le <i>et al</i> , 2015 ⁴⁴	WES	ORR, PFS			
Multiple solid tumours	KEYNOTE-012/KEYNOTE-028 ¹²⁰ 121	WES	ORR			



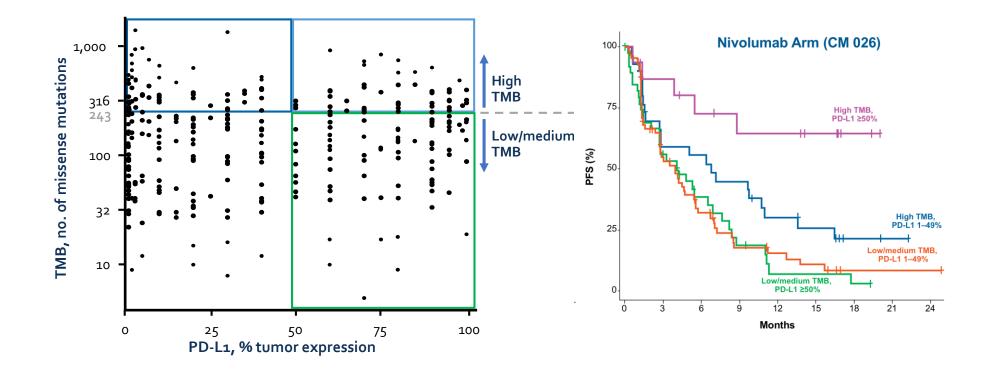
TMB has predictive predictive value for IO activity across cancer types

Snyder, N Engl J Med. 2014; Le DT, N Engl J Med. 2015; Van Allen EM, Science. 2015; Hugo, Cell. 2016; Powles, Lancet 2018


Requirements for a response to anti-PD1: MSI-high tumors

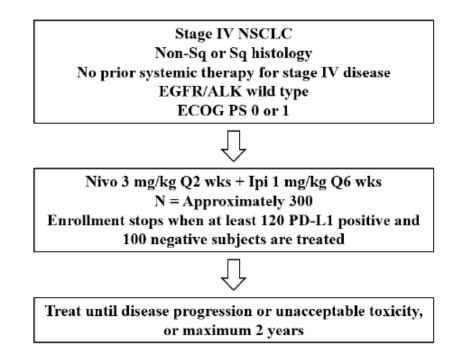
Le et al., NEJM 2015

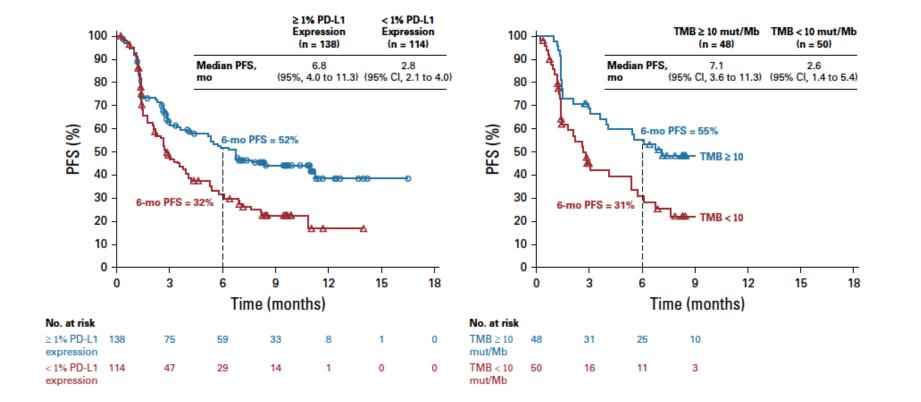
TMB correlates to tumor type specific response rate


NGS gene panels to assess TMB

Status	Test name	Number of genes	Coverage (Mb)*	Gene variants	Sample type
FDA-approved or authorised diagnostic assays†	MSK-IMPACT ^{15 56 68}	468	1.5	SNVs, indels, rearrangements/ fusions, CNAs, parallel analysis of genomic signatures (eg, TMB and dMMR/MSI)	FFPE
	Foundation Medicine FoundationOne CDx ^{14 49}	324	0.8	SNVs, indels, CNAs, select rearrangements, parallel analysis of genomic signatures (eg, TMB and dMMR/MSI)	FFPE
Commercial assays for	Caris Molecular Intelligence ¹³²	592	1.4	Somatic missense mutations	FFPE
research use only	Illumina TruSight 500 gene panel ¹³³	500	2.0	SNVs and indels	FFPE
	Thermo Fisher Scientific Oncomine Tumor Mutation Load Assay ⁷⁷	409	1.7	SNVs	FFPE
	NEO New Oncology NEOplus v2 RUO ¹³⁴	>340	1.1	SNVs, indels, fusions, CNAs, parallel analysis of TMB, MSI, and driver mutations	FFPE
	Foundation Medicine FoundationOne ⁵⁰	315	1.1	SNVs, indels, CNAs, select gene rearrangements, genomic signatures for MSI and TMB	FFPE
	Foundation Medicine bTMB assay ^{88 122}	394	1.1	SNVs	Blood
	TruSight Tumor 170 ¹³⁵	170	0.5	Fusions, splice variants, SNVs, indels, amplifications	FFPE
	QIAGEN GeneRead DNAseq Comprehensive Cancer Panel ⁹⁷	160	0.7	SNVs, CNAs, indels, and fusions	FFPE
	NEO New Oncology NEOplus ^{105 136}	94		SNVs, indels, CNAs, rearrangements, and fusions	FFPE

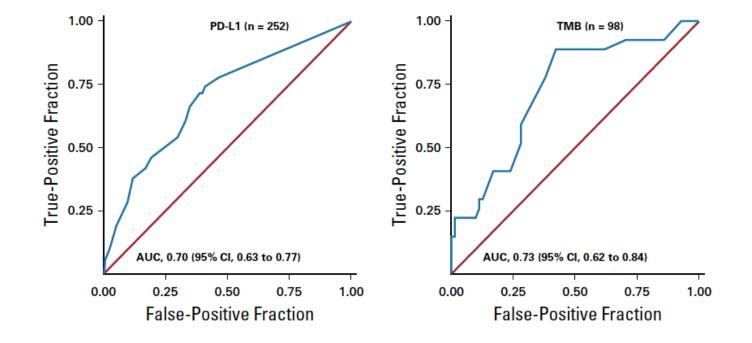
ESVO


TMB is not correlated to PD-L1 Expression Both biomarkers might be additive


 First-Line Nivolumab Plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer (CheckMate 568):
 Outcomes by Programmed Death Ligand 1 and Tumor Mutational Burden as Biomarkers
 Neal Ready, MD, PhD¹; Matthew D. Hellmann, MD²; Mark M. Awad, MD, PhD³; Gregory A. Otterson, MD⁴; Martin Gutierrez, MD⁵;

Neal Ready, MD, PhD¹; Matthew D. Hellmann, MD²; Mark M. Awad, MD, PhD³; Gregory A. Otterson, MD⁴; Martin Gutierrez, MD⁵; Justin F. Gainor, MD⁶; Hossein Borghaei, DO⁷; Jacques Jolivet, MD⁸; Leora Horn, MD⁹; Mihaela Mates, MD¹⁰; Julie Brahmer, MD¹¹; Ian Rabinowitz, MD¹²; Pavan S. Reddy, MD¹³; Jason Chesney, MD, PhD¹⁴; James Orcutt, MD¹⁵; David R. Spigel, MD¹⁶; Martin Reck, PhD¹⁷; Kenneth John O'Byrne, MD¹⁸; Luis Paz-Ares, MD, PhD¹⁹; Wenhua Hu, PhD²⁰; Kim Zerba, PhD²⁰; Xuemei Li, MD²⁰; Brian Lestini, MD, PhD²⁰; William J. Geese, PhD²⁰; Joseph D. Szustakowski, PhD²⁰; George Green, PhD²⁰; Han Chang, PhD²⁰; and Suresh S. Ramalingam, MD²¹

Progression free survival according to PD-L1 expression or TMB



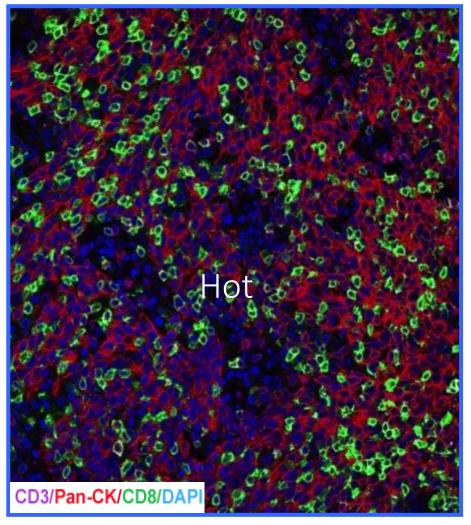
ORR following ipilimumab + nivolumab according to PD-L1 or TMB

Variable	All Treated (N = 288)	< 1% PD-L1 Expression (n = 114)	≥ 1% PD-L1 Expression (n = 138)	≥ 50% PD-L1 Expression (n = 68)	PD-L1 Expression Not Quantifiable (n = 36)	
Objective response						
No. of patients	86	17	57	34	12	
Percentage of patients (95% CI)	29.9 (24.6 to 35.5)	14.9 (8.9 to 22.8)	41.3 (33.0 to 50.0)	50.0 (37.6 to 62.4)	33.3 (18.6 to 51.0)	
Best overall response, No. (%)						
Complete response	7 (2.4)	3 (2.6)	4 (2.9)	3 (4.4)	0	
Partial response	79 (27.4)	14 (12.3)	53 (38.4)	31 (45.6)	12 (33.3)	
Stable disease	104 (36.1)	53 (46.5)	40 (29.0)	17 (25.0)	11 (30.6)	
Progressive disease	76 (26.4)	36 (31.6)	31 (22.5)	13 (19.1)	9 (25.0)	
Could not be determined	22 (7.6)	8 (7.0)	10 (7.2)	4 (5.9)	4 (11.1)	
		TMB (mut/Mb)				
Variable	< 5 (n = 23)	≥ 5 to < 10 (n = 27)	≥ 10 (n = 48)	≥ 10 to < 15 (n = 20)	5 ≥ 15 (n = 28)	
Objective response						
No. of patients	2	4	21	10	11	
Percentage of patients (95% CI)	8.7 (1.1 to 28.0)	14.8 (4.2 to 33.7	7) 43.8 (29.5 to 5	8.8) 50.0 (27.2 to 7	2.8) 39.3 (21.5 to 59.4)	
Best overall response, No. (%)						
Complete response	0	1 (3.7)	4 (8.3)	2 (10.0)	2 (7.1)	
Partial response	2 (8.7)	3 (11.1)	17 (35.4)	8 (40.0)	9 (32.1)	
Stable disease	11 (47.8)	12 (44.4)	14 (29.2)	5 (25.0)	9 (32.1)	
Progressive disease	6 (26.1)	7 (25.9)	13 (27.1)	5 (25.0)	8 (28.6)	
Could not be determined	4 (17.4)	4 (14.8)	0	0	0	

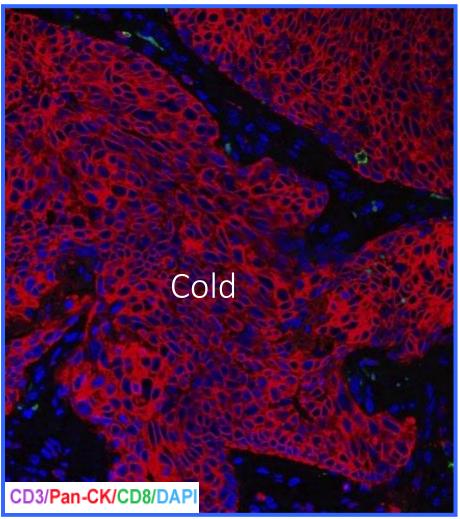
Receiver operating characteristic curves (ROC) of objective response rate by tumor programmed death li-gand 1 (PD-L1) expression and tumor mutational burden (TMB)

No data were provided on using the combination of both biomarkers

Solid predictive biomarkers of response or resistance to IO treatment are lacking


What do we have so far?

- PD-L1 IHC
- Tumor Mutational Burden (WES/WGS or targeted panel seq)
- TIL (IHC)
- Gene Expression Profiling



Tumor Infiltrating Lymphocyten (TIL)

Diffuse infiltration with CD8+ TILs

Absence of TILs

Role for T cells in cancer

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Intratumoral T Cells, Recurrence, and Survival in Epithelial Ovarian Cancer

Lin Zhang, M.D., Jose R. Conejo-Garcia, M.D., Ph.D., Dionyssios Katsaros, M.D., Ph.D., Phyllis A. Gimotty, Ph.D., Marco Massobrio, M.D., Giorgia Regnani, M.D., Antonis Makrigiannakis, M.D., Ph.D., Heidi Gray, M.D., Katia Schlienger, M.D., Ph.D., Michael N. Liebman, Ph.D., Stephen C. Rubin, M.D., and George Coukos, M.D., Ph.D.

OXFORD

JNCI J Natl Cancer Inst (2015) 107(3): dju435

doi:10.1093/jnci/dju435 First published online February 3, 2015 Article

ARTICLE Objective Measurement and Clinical Significance of TILs in Non–Small Cell Lung Cancer

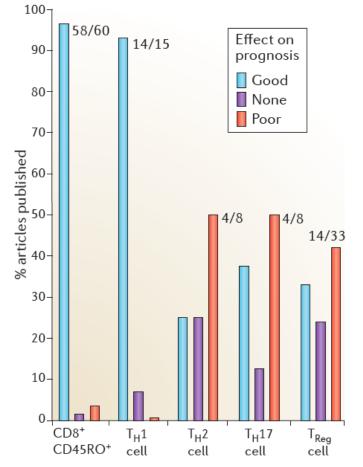
Kurt A. Schalper, Jason Brown, Daniel Carvajal-Hausdorf, Joseph McLaughlin, Vamsidhar Velcheti, Konstantinos N. Syrigos, Roy S. Herbst, David L. Rimm

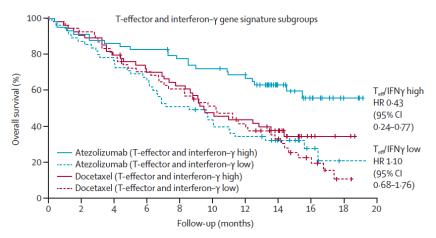
Type, Density, and Location of Immune Cells Within Human Colorectal Tumors Predict Clinical Outcome Jérôme Galon, *et al. Science* **313**, 1960 (2006); DOI: 10.1126/science.1129139

Cancer Research

Immunotype and Immunohistologic Characteristics of Tumor-Infiltrating Immune Cells Are Associated with Clinical Outcome in Metastatic Melanoma

Gulsun Erdag, Jochen T. Schaefer, Mark E. Smolkin, et al.

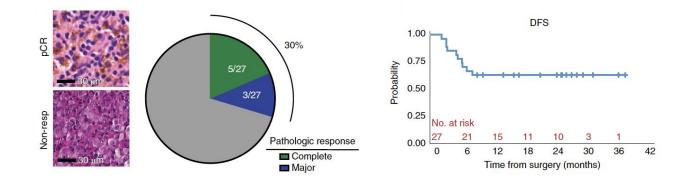

Cancer Res 2012;72:1070-1080. Published OnlineFirst January 19, 2012.


ES VO

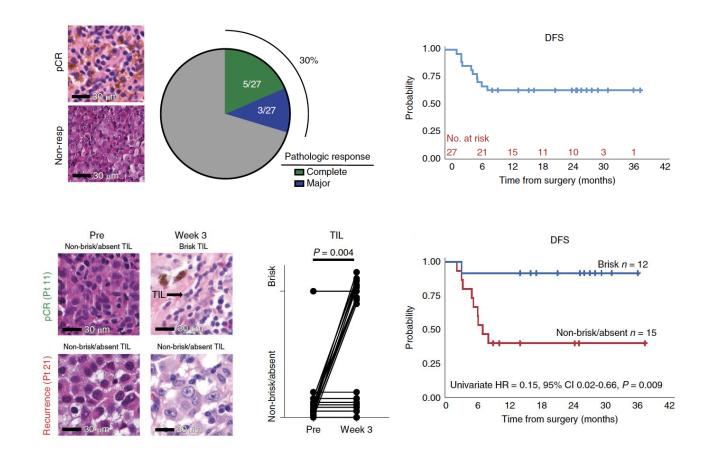
TIL and cancer outcome

Patients with a pre-existing immune response derive the most benefit from checkpoint inhibitors

Teff/IFNy: CD8A, GZMA, GZMB, CXCL9, EOMES, IFNg, CXCL10, T-bet

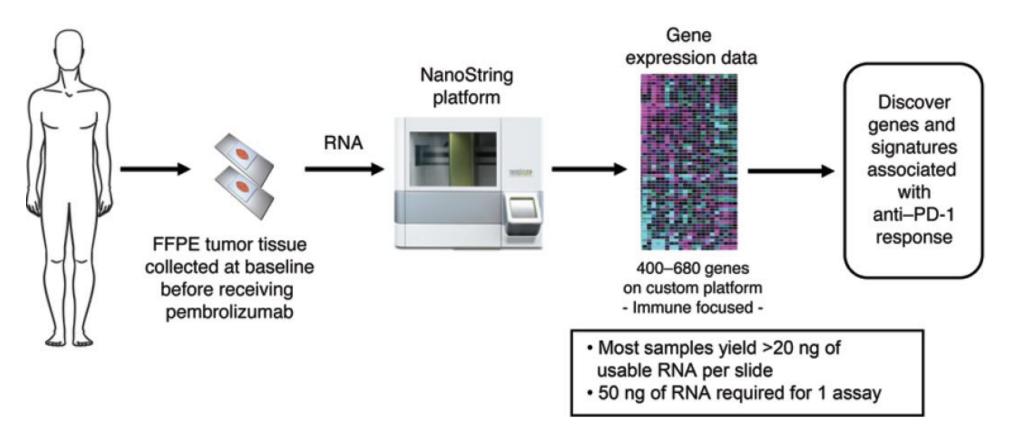

A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma

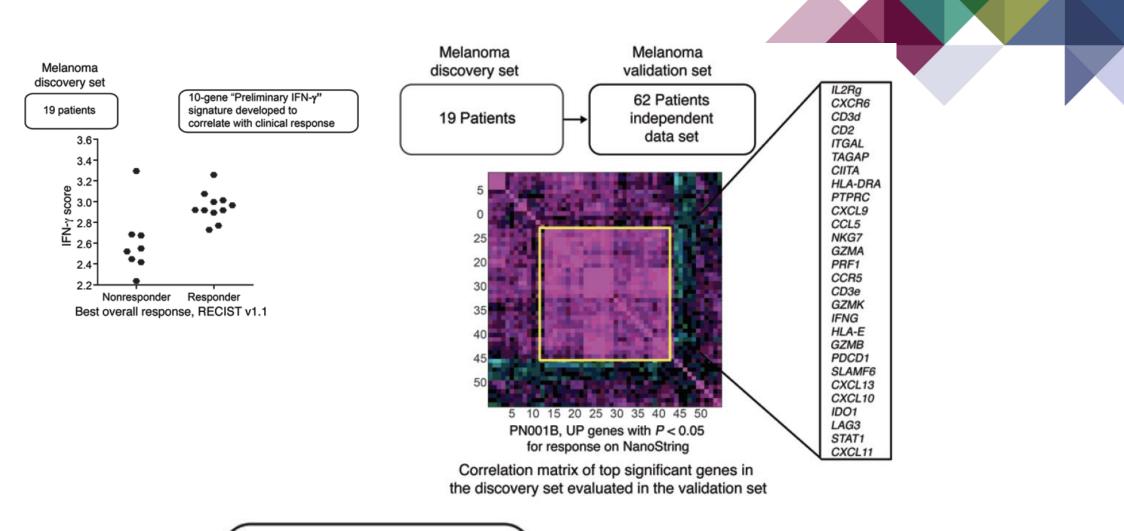
Alexander C. Huang ^{1,2,3,4,16*}, Robert J. Orlowski^{1,11,16}, Xiaowei Xu^{4,5}, Rosemarie Mick^{3,4,6}, Sangeeth M. George^{7,12}, Patrick K. Yan ^{2,7}, Sasikanth Manne^{2,7}, Adam A. Kraya^{1,4}, Bradley Wubbenhorst^{1,4}, Liza Dorfman^{1,4}, Kurt D'Andrea^{1,4}, Brandon M. Wenz^{1,4}, Shujing Liu^{4,5}, Lakshmi Chilukuri^{2,7}, Andrew Kozlov^{4,8}, Mary Carberry^{1,4}, Lydia Giles^{1,4}, Melanie W. Kier¹, Felix Quagliarello^{2,13}, Suzanne McGettigan^{1,4}, Kristin Kreider^{1,4}, Lakshmanan Annamalai⁹, Qing Zhao⁹, Robin Mogg^{9,14}, Wei Xu^{1,4}, Wendy M. Blumenschein⁹, Jennifer H. Yearley⁹, Gerald P. Linette^{1,2,3,4}, Ravi K. Amaravadi^{1,4}, Lynn M. Schuchter^{1,4}, Ramin S. Herati^{1,2}, Bertram Bengsch^{2,15}, Katherine L. Nathanson^{1,3,4}, Michael D. Farwell^{4,8,17}, Giorgos C. Karakousis^{4,10,17}, E. John Wherry ^{2,3,4,7,17*} and Tara C. Mitchell ^{1,4,17*}



Early pathological response to neoadjuvant anti-PD-1 or anti-CTLA-4 + anti-PD-1 is correlated with improved survival

Early TIL infiltration following anti-PD-1 correlated with improved survival

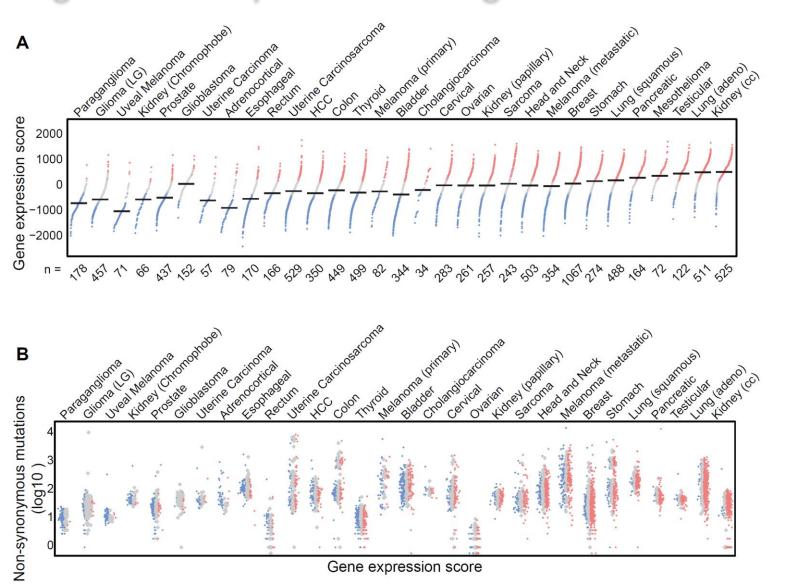



IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade

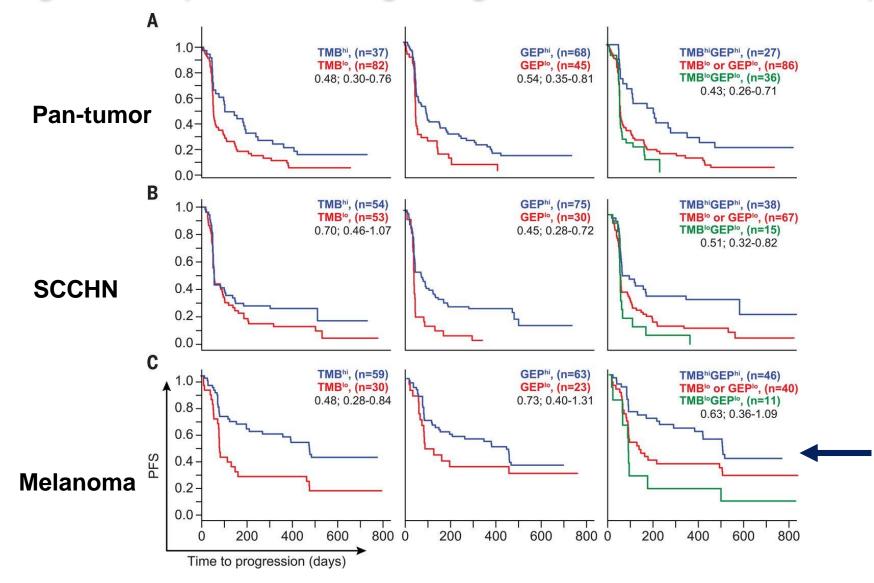
RESEARCH ARTICLE

ES VO

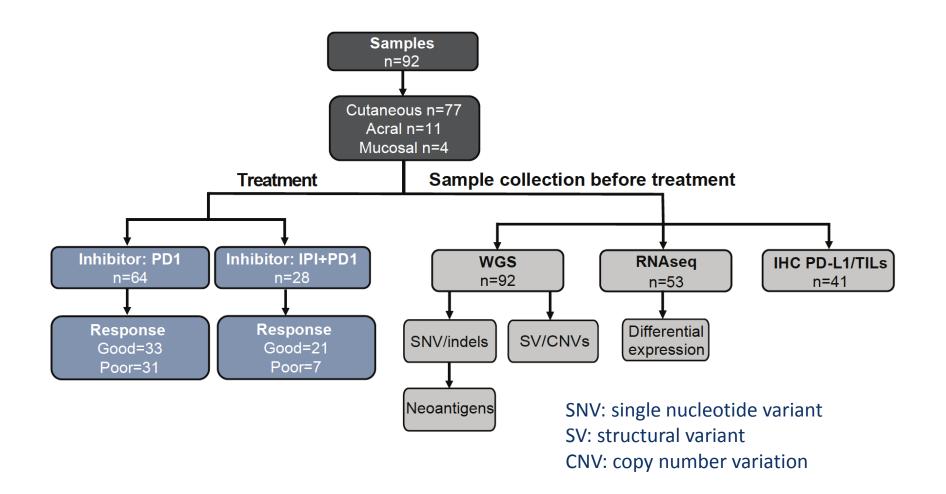
Mark Ayers,¹ Jared Lunceford,¹ Michael Nebozhyn,¹ Erin Murphy,¹ Andrey Loboda,¹ David R. Kaufman,¹ Andrew Albright,¹ Jonathan D. Cheng,¹ S. Peter Kang,¹ Veena Shankaran,² Sarina A. Piha-Paul,³ Jennifer Yearley,¹ Tanguy Y. Seiwert,⁴ Antoni Ribas,⁵ and Terrill K. McClanahan¹



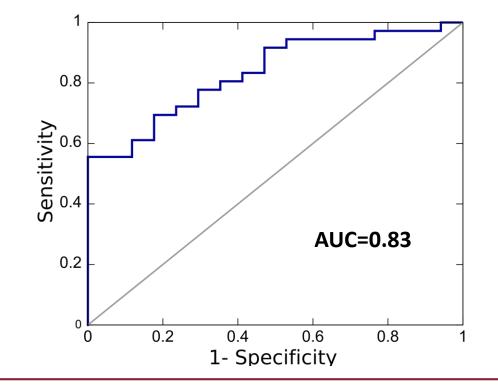
ESV0


"Preliminary expanded immune" (28-gene) signature: coherent set correlated with the 10-gene "preliminary IFN-γ" signature genes (bolded text)

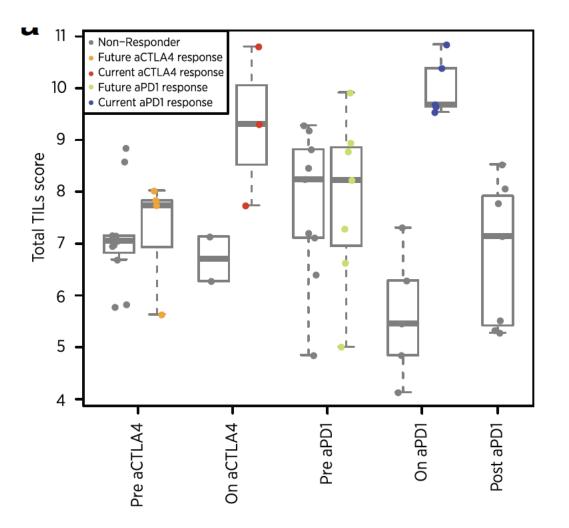
Tumor mutational burden does not correlate with T cell gene signature in any cancers among TCGA


Integrated analysis of immune gene signature + TMB enriches for responders

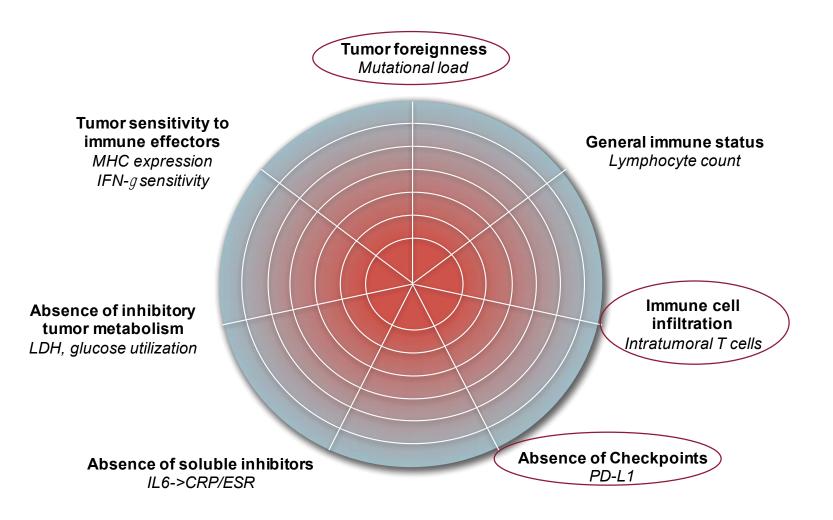
ESMO

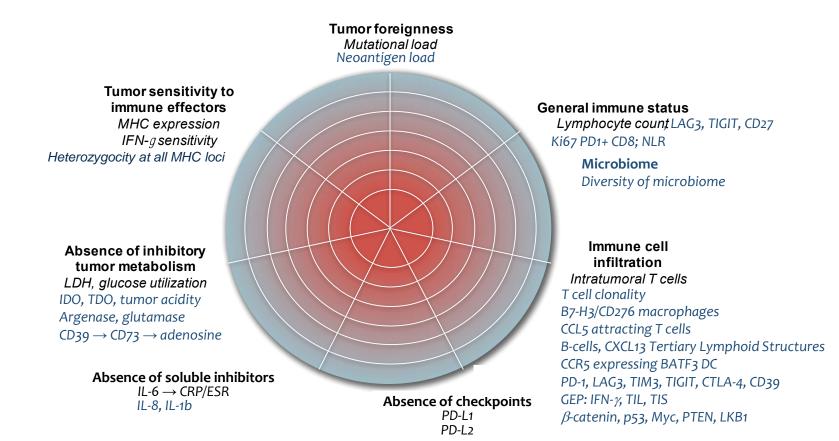

Ines Pires da Silva et al: samples analyzed

Combined immune gene signature and TMB was best predictive biomarker

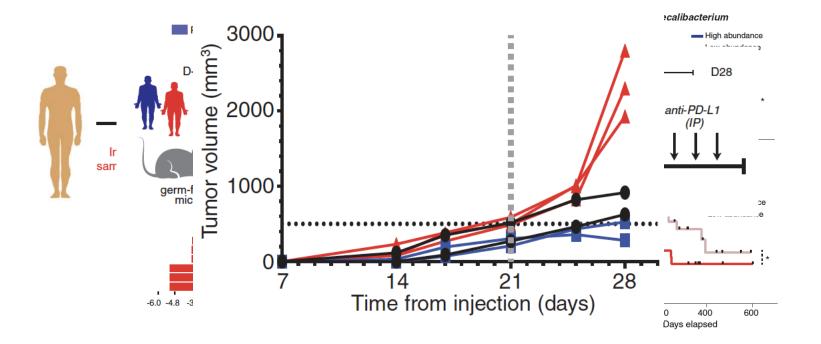

TMB and IFNg.6 score predictive model

Plan to study outliers and to identify mechanisms of resistance


Changes in TIL score upon anti-CTLA4 or anti-PD-1 treatment in metastatic melanoma

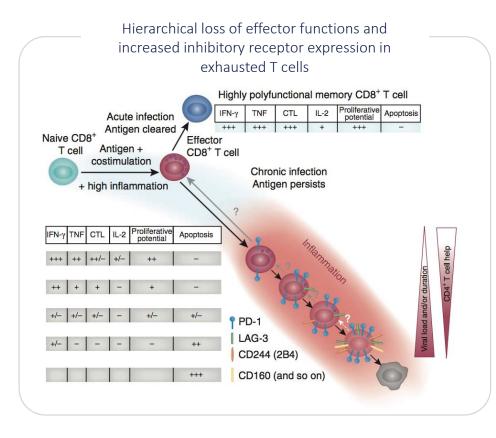


The Cancer Immunogram



An evolving immunogram : increasing complexity requiring big data

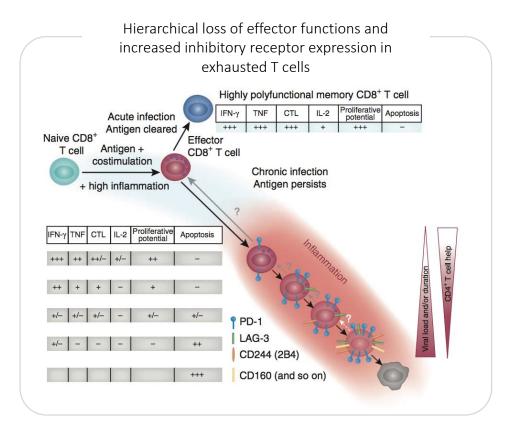
Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients

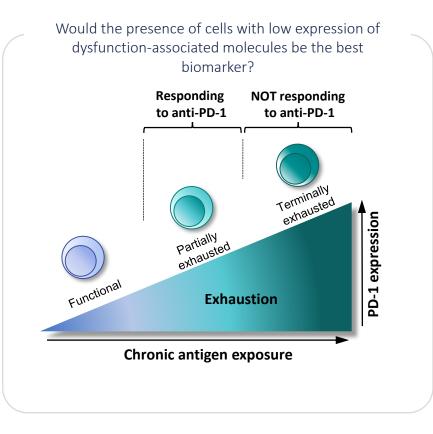


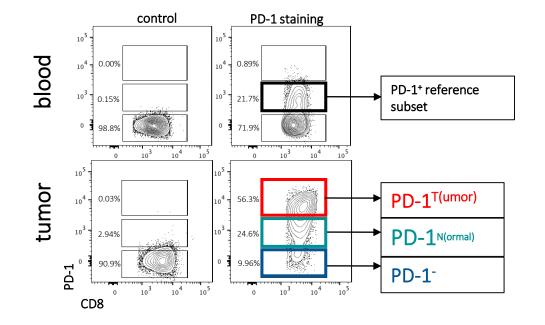
Manipulation of the Gut Microbiome to Enhance Responses to Cancer Immunotherapy

Trial Number	Patient Population	Intervention	Outcome(s)	Status
NCT02843425	all cancer patients treated at MDACC	addition of ½ cup beans per day to regular diet in a crossover design	primary: change in fecal microbiome profile from baseline (via 16S profiling)	open and recruiting (MDACC)
NCT02079662	stages II and III breast cancer patients treated at MDACC ages 18+	randomized intensive lifestyle change (diet, exercise, psychosocial)	primary: disease-free survival (DFS) secondary: change in fecal and oral microbiome (via 16S profiling)	open and recruiting (MDACC)
NCT01895530	CRC patients ages 18+ undergoing elective CRC resection	randomized probiotic (S. Boulardii) administration	primary: cytokine expression in colonic mucosa (via qPCR) secondary: post-operative complications	completed (Consoli et al., 2016)
NCT03072641	CRC patients ages 18+	randomized probiotic (ProBion Clinica <i>B. lactis</i> BI-04, <i>L. acidophilus</i> NCFM + Inulin) administration	primary: change in fecal and tumor microbiota from baseline secondary: changes in epigenetic patterns of tumor tissue from baseline	completed (Hibberd et al., 2017)
NCT03358511	post-menopausal breast cancer patients stages –III	single-arm probiotic (Primal Defense Ultra multi-strain probiotic formula) administration	primary: change in mean number of CD8+ cells from baseline	open and recruiting (Mayo Clinic)
NCT02928523	acute myeloid leukemia patients ages 18–65 treated with intensive chemo and antibiotics	single-arm autologous FMT (frozen inoculum)	primary: diversity of the gut microbiome, multi-drug-resistant bacteria eradication secondary: signature of dysbiosis of gut microbiome	ongoing, close to recruiting (France)
NCT03353402	metastatic melanoma patients ages 18+ who previously failed standard therapies	single-arm FMT (colonoscopy or gastroscopy) from patient donors who responded to immunotherapy	primary: safety (AEs associated with FMT), engraftment of FMT secondary: changes in immune cell populations and activity, objective response rate	open and recruiting (Israel)

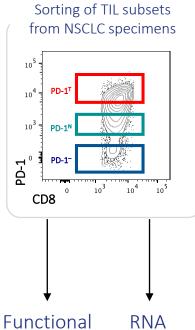
Testing the progressive exhaustion model in human NSCLC

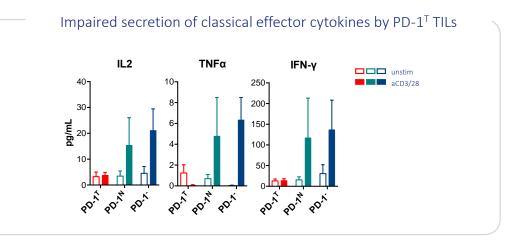



Daniela Thommen

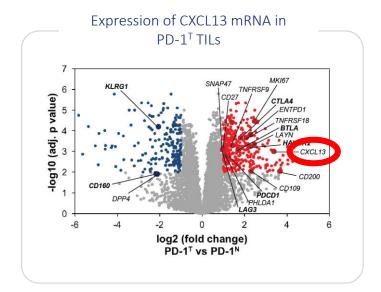


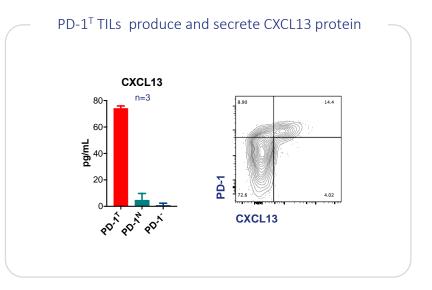
Testing the progressive exhaustion model in human NSCLC

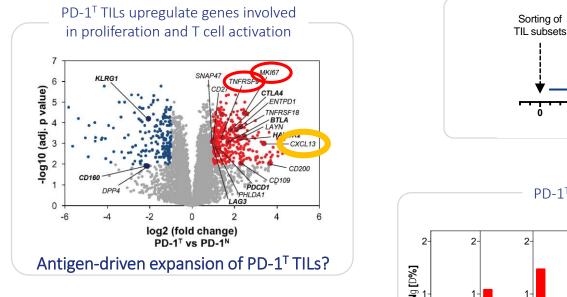

Standardized identification of T cells with different PD-1 expression levels in NSCLC

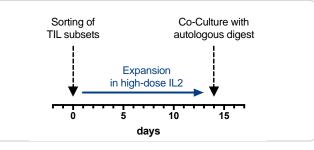


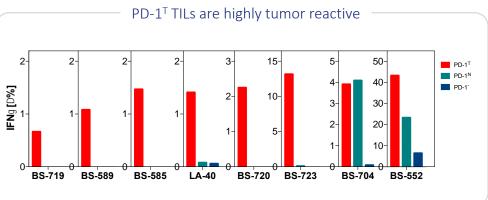
PD-1[⊤] TILs show loss of effector function


analyses sequencing

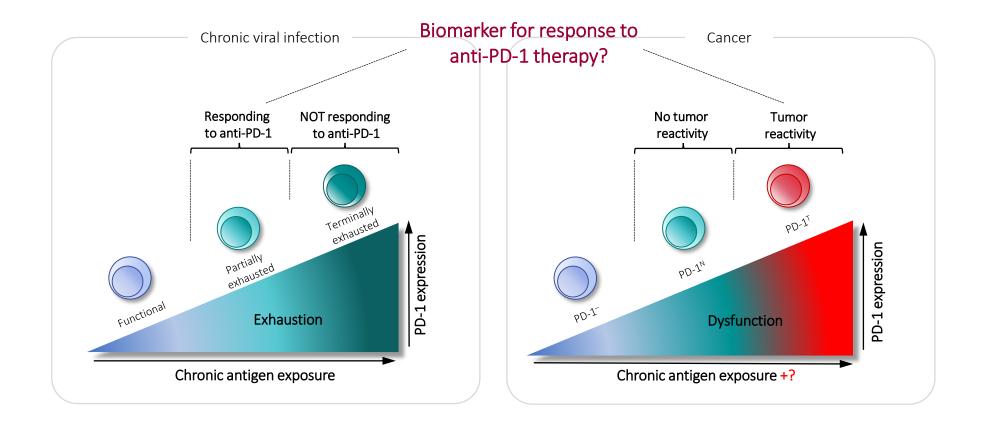


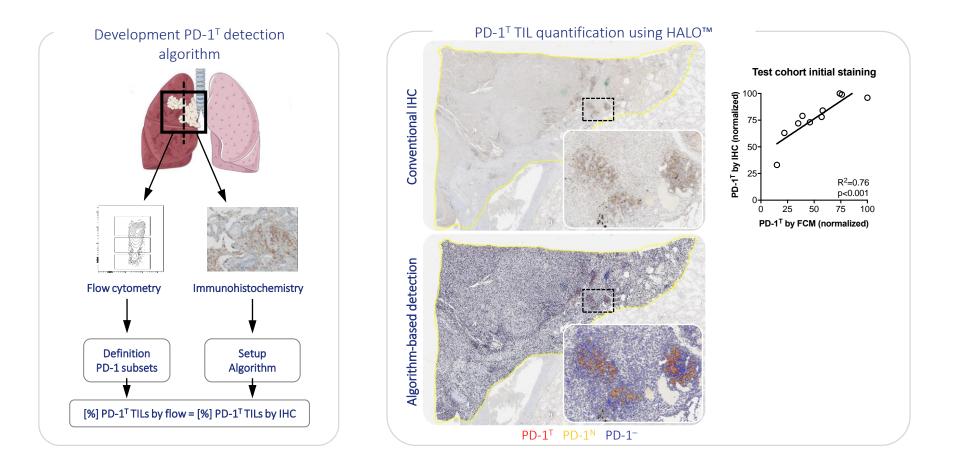

A novel function of $PD-1^T$ CD8 T cells in the TME

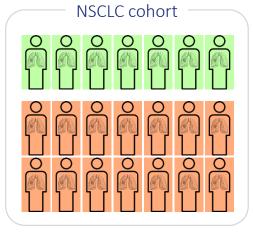




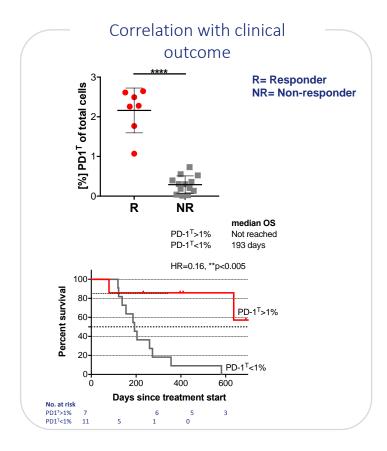
PD-1^T TILs have an increased capacity for tumor recognition

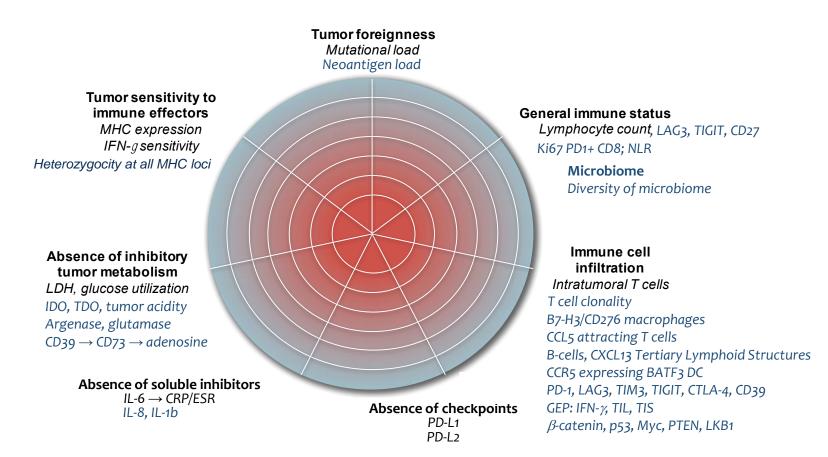






Algorithm-based digital image analysis for quantification of PD-1 expression levels




Presence of PD-1[⊤] TILs correlates with response and survival upon PD-1 blockade

- 21 patients treated with anti-PD-1
 therapy
- Stage IV NSCLC
- No previous IT treatment
- Pathologists were blinded to treatment outcome

Cancer Immunogram: a multiparameter framework to check cancerimmune interactions

Working towards a complex multifaceted biomarker to predict response to IO

Take home messages

Unlike predictive biomarkers for targeted therapy, biomarkers for response to IT will be complex:

- Not one single marker predicts response/resistance
- Often no good cut off (PD-L1, TMB, TIL, GEP) as these are continuous biomarkers
- Combination of markers is being examined and appears better than single biomarkers
- New potential biomarkers are emerging:
 - Microbiome
 - PD-1
 - TLS, CXCL13
 - Myeloid markers
 - Metabolic biomarkers
 - TCR clonality
- We are in need of liquid biomarkers!
- We should start looking at early time points following IT (change timing of liquid and tumor biopsies)

