

IMPROVING CARE AND KNOWLEDGE THROUGH TRANSLATIONAL RESEARCH IN BREAST CANCER

WELCOME TO IMPAKT

Brussels, Belgium 7-9 MAY 2015

IMPAKT Chairs: Nicholas Turner London, UK and Carsten Denkert, Berlin, Germany

BASICS IN DNA REPAIR

Brussels 5th May 2015

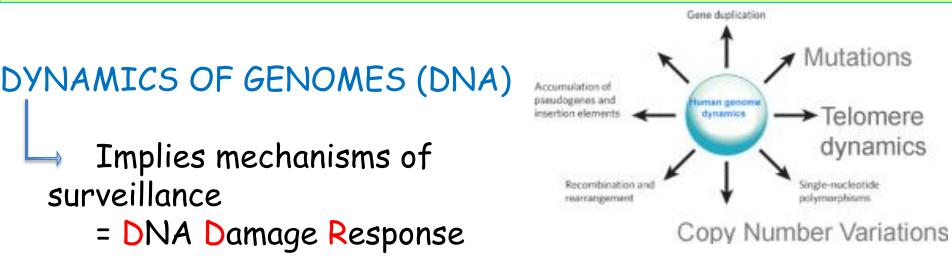
Jean Feunteun Gustave-Roussy Villejuif France

DISCLOSURE

•Any financial interest in, or arrangement with, a company whose products or services are discussed in the lecture: NO

•Any financial interest in, or arrangement with, a competing company: NO

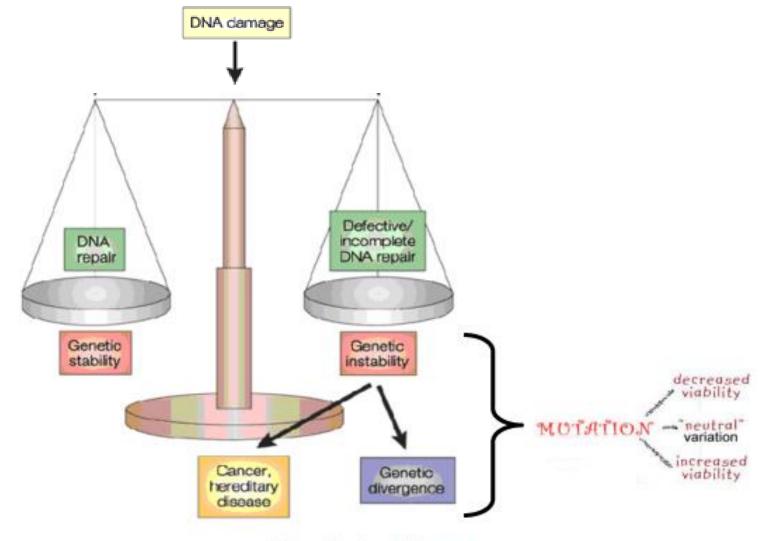
•Any other financial connections, direct or indirect, or other situations that might raise the question of bias in the work reported or the conclusions, implications, or opinions stated – including pertinent commercial or other sources of funding for the individual Speaker or for the associated department or organization, personal relationships, or direct academic competition. NO



Summary

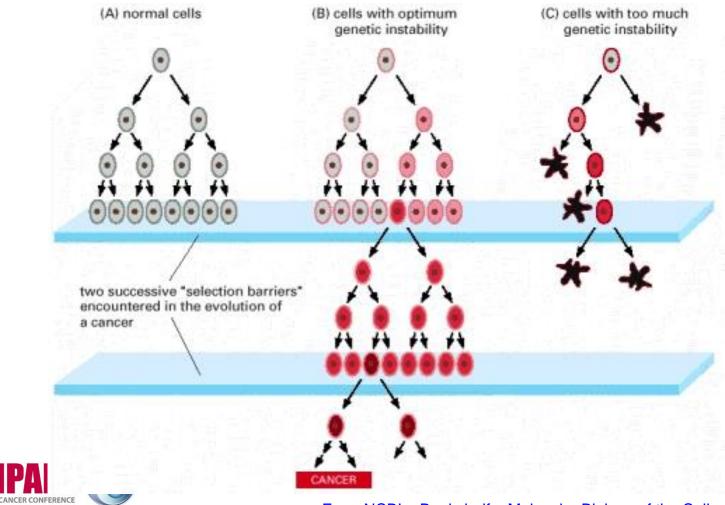
- Dynamics of genetic information
- DNA damage and cancer cells selection
- Types of DNA Damages
- DNA lesions: cause of cancer and cancer treatment
- Pharmacological targeting of DNA Damage Response:
 →Synthetic lethality

Dynamics of genetic information



DYNAMICS OF GENE EXPRESSION (RNA): Differential splicing.....

Implies mechanisms of surveillance de l'information:
 Nonsense-Mediated Decay (NMD).....


DNA damage and cancer cells selection

Nature Reviews | Cancer

Genetic instability Cause and consequence of cancer

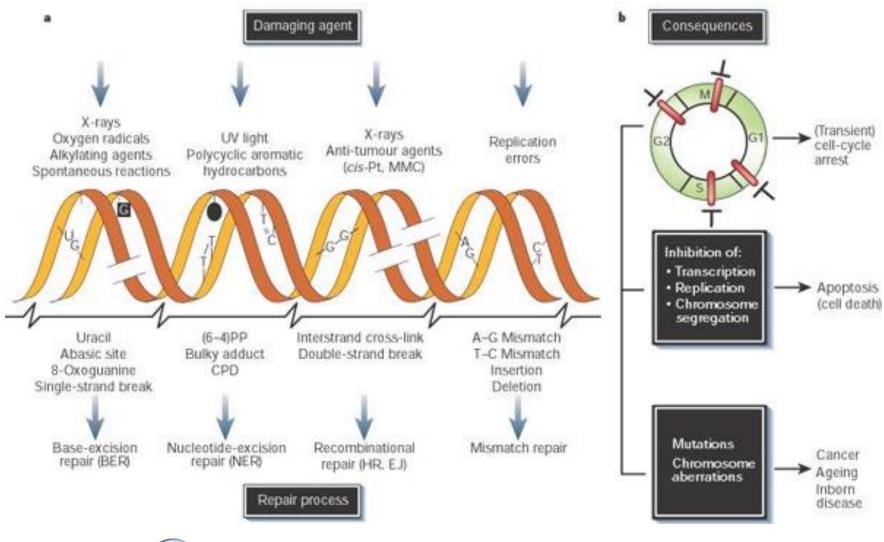
From NCBI » Bookshelf » Molecular Biology of the Cell »

DNA Damage Response: Surveillance at work

Drivers or Passengers

Mutations in cancers are either drivers or passengers. •Driver mutations are the ones that cause cancer cells to grow. •Passengers are co-travellers that make no contribution to cancer development.

Most mutations in cancers are passengers

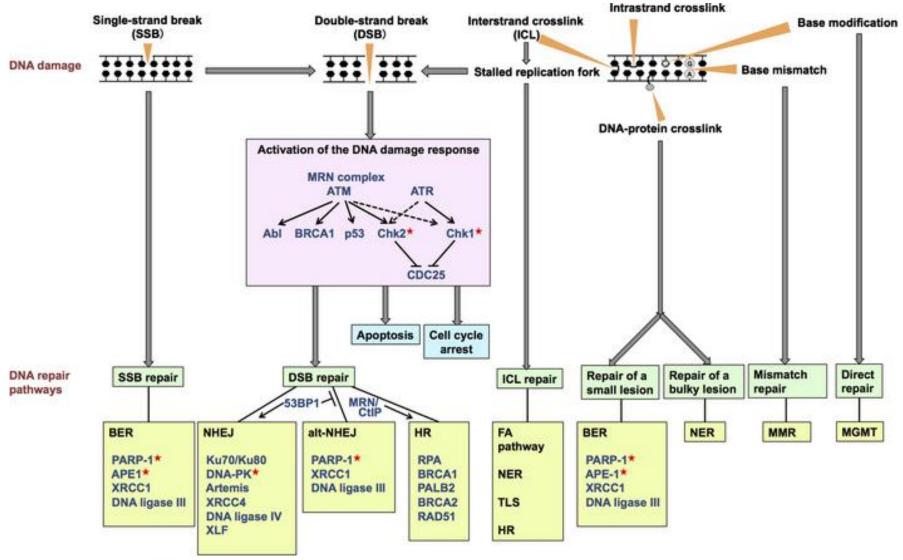

Human familial cancer syndromes due to inherited defects in DNA Damage response

Name of syndrome	Name of gene	Cancer phenotype	Enzyme or process affected
HNPCC	(4-5 genes)*	colonic polyposis	mismatch repair enzymes
XPb	(8 genes) ^b	UV-induced skin cancers	nucleotide-excision repair
AT	ATM	leukemia, lymphoma	response to dsDNA breaks
AT-like disorder	MRE11	not yet determined	dsDNA repair by NHEJ
Familial breast, ovarian cancer	BRCA1, BRCA2d	breast and ovarian carcinomas	homology-directed repair of dsDNA breaks
Werner	WRN	several cancers	exonuclease and DNA helicase ^e , replication
Bloom	BLM	solid tumors	DNA helicase, replication
Fanconi anemia	(9 genes) ^f	AML, HNSCC	repair of DNA cross-links and ds breaks
Nijmegen break ⁹	NBS	mostly lymphomas	processing of dsDNA breaks, NHEJ
Li-Fraumeni	TP53	multiple cancers	DNA damage alarm protein
Li-Fraumeni	СНК2	colon, breast	kinase signaling DNA damage

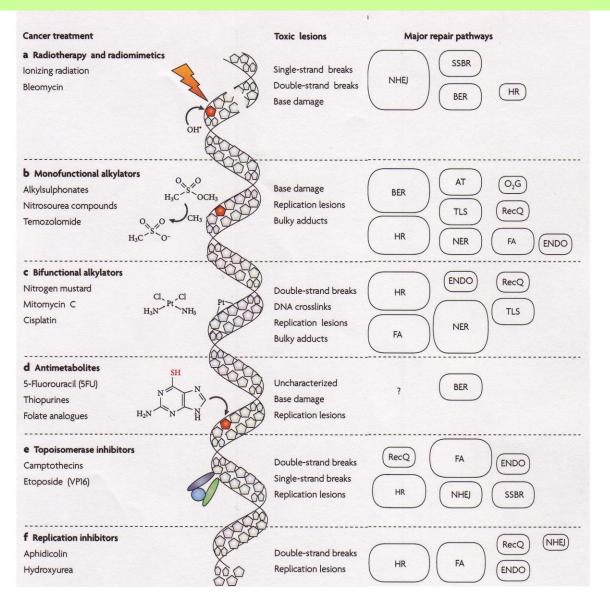
Adapted in part from B. Alberts et al., Molecular Biology of the Cell, 4th ed. New York: Garland Science, 2002; and from E.R. Fearon, Science 278:1043–1050, 1997.

DNA Damages

Jan H. J. Hoeijmakers Nature 411, 366-374 (2001)


Integrated DNA Damage Response.

SP Jackson & J Bartek *Nature* **461**, 1071-1078 (2009)


The DNA damage responses

Hosoya N. and Miyagawa K. Cancer Science 105, 370-388, 2014

DNA lesions: cause of cancer and cancer treatment

DNA Damage Response inhibitors

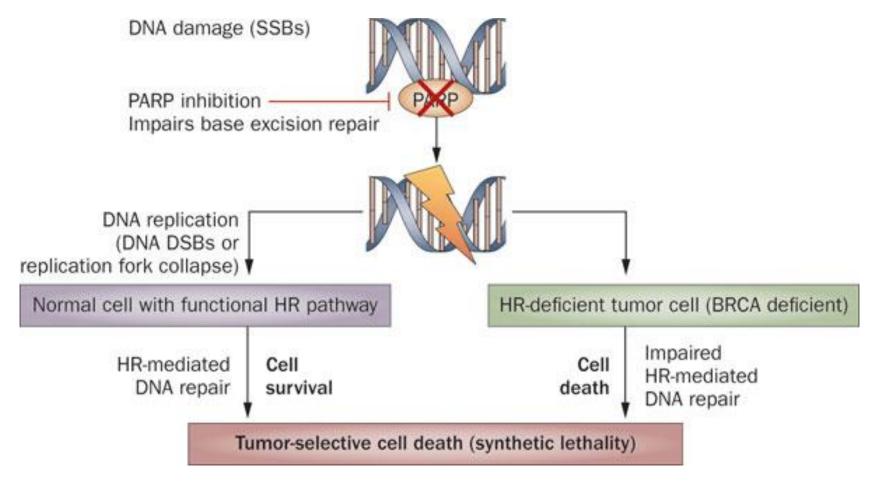
Table 2. Examples of DNA damage response inhibitors in preclinical studies

Pathway	Target(s)	Name(s)	Preclinical evidence			
DNA damage	MRE11	Mirin, telomelysin	Sensitization to ionizing radiation			
sensors and	ATM	KU55933, KU60019,	Sensitization to ionizing radiation and topoisomerase inhibitors			
mediators		CP466722				
	ATR	Schisandrin B	Sensitization to UV treatment			
		NU6027, VE-821	Sensitization to ionizing radiation and a variety of chemotherapy			
Cell cycle	Chk1	SAR-020106	Sensitization to irinotecan and gemcitabine			
checkpoints	Chk2	VRX0466617	Sensitization to ionizing radiation			
Non-homologous	DNA-PK	NU7026, NU7441	Sensitization to ionizing radiation and topoisomerase II inhibitors			
end joining	DNA-PK and PI3K	KU-0060648	Sensitization to etoposide and doxorubicin			
	DNA ligase IV	SCR7	Sensitization to ionizing radiation and etoposide			
Alternative	DNA ligases	L67	Sensitization to ionizing radiation and methyl methanesulfonate			
non-homologous	I and IIIα					
end joining						
Homologous	RAD51	B02, A03, A10	Identified by high-throughput screenings of RAD51 inhibitors			
recombination (HR)			•			

Table 3. Examples of DNA damage response inhibitors in clinical trials

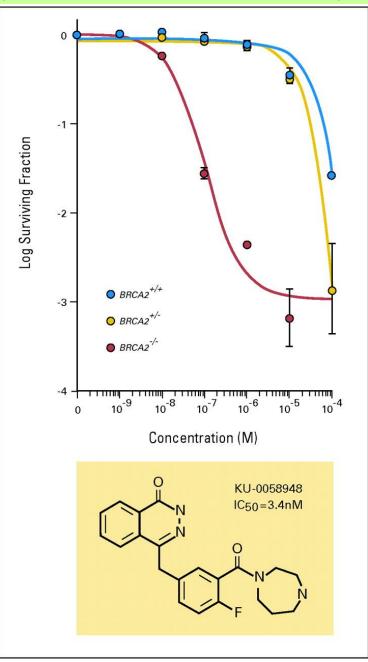
Pathway	Target(s)	Name	Combination	Type of cancer	Clinical trial number	Stage	Trial periods
Cell cycle	Chk1	UCN-01	Combination therapy				
checkpoints			Carboplatin	Advanced solid tumor	NCT00036777	Phase I	Completed
			Irinotecan	Metastatic or	NCT00031681	Phase I	Completed
				unresectable solid tumor,			
				triple negative breast cancer			
			Cytarabine	Refractory or relapsed	NCT00004263	Phase I	Completed
			Cytarabilite	acute myelogenous	140100004205	rnaser	completed
				leukemia,			
				myelodysplastic			
				syndrome			
			Perifosine	Relapsed or refractory	NCT00301938	Phase I	Completed
				acute leukemia, chronic			
				myelogenous leukemia,			
				high risk myelodysplastic			
			Gemcitabine	syndrome Unresectable or	NCT00039403	Phase I	Completed
			Genicitabilie	metastatic pancreatic	NC100039403	Filase I	completed
				cancer			
			Topotecan	Relapsed or progressed	NCT00098956	Phase II	Completed
				small-cell lung cancer			
			Cisplatin	Advanced malignant	NCT00012194	Phase I	Terminated
				solid tumor			
			Fluorouracil	Metastatic pancreatic	NCT00045747	Phase II	Completed
			Prednisone	cancer	NCTOODALLOO	Dhara I	Completed
			Prednisone	Refractory solid tumor, lymphoma	NCT00045500	Phase I	Completed
			Irinotecan	Advanced solid tumor	NCT00047242	Phase I	Completed
			Fluorouracil.	Metastatic or	NCT00042861	Phase I	Completed
			leucovorin	unresectable solid tumor			
			Topotecan	Advanced ovarian	NCT00072267	Phase II	Completed
				epithelial, primary			

peritoneal, fallopian


Pharmacological targeting of DNA Damage Response: Synthetic lethality (1)

Normal cell Cancer cell Gene B Cell survival? Gene B Cell survival? Gene A Gene A Mutated •Drug •siRNA Mutated

Synthetic lethality (2)


Mechanism of synthetic lethality between *BRCA* deficiency and PARP inhibition

Banerjee, S. *et al.* (2010) Making the best of PARP inhibitors in ovarian cancer *Nat. Rev. Clin. Oncol.*

Synthetic lethality (3)

JOURNAL OF CLINICAL ONCOLOGY

Ashworth A JCO 2008;26:3785-3790

Conclusions

DNA Damage Response at the heart of cancer cell biology:

- Defects in DDR drive cancer selection
- DDR pathways = pharmacological targets

