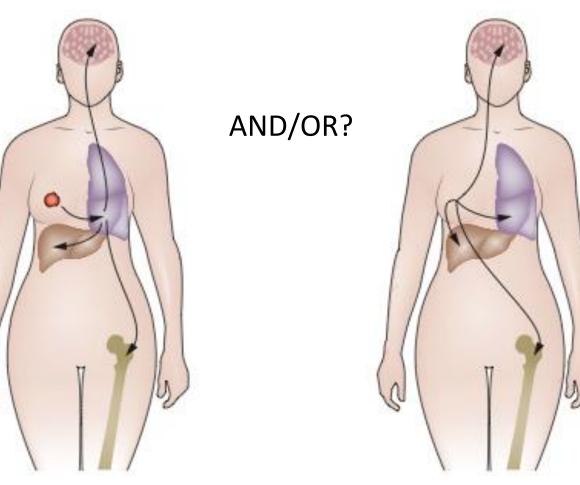


Tumor evolution in the metastatic setting

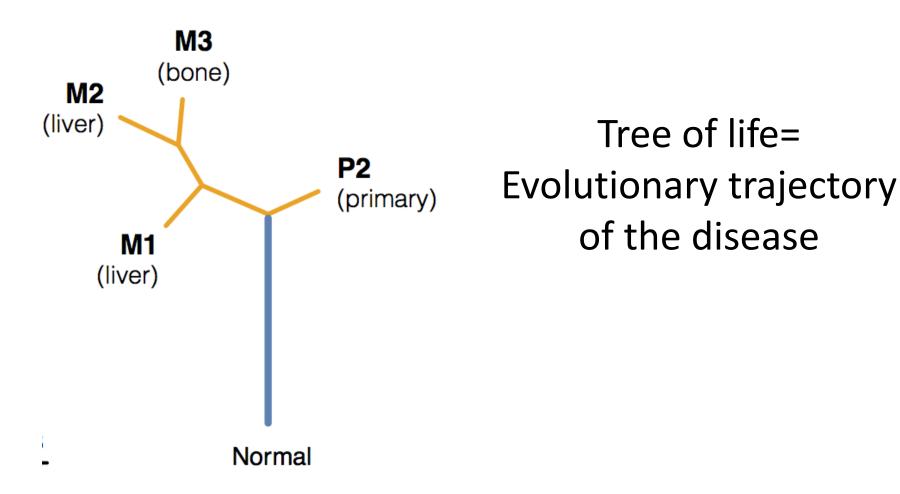

Christine Desmedt

Breast Cancer Translational Research Lab Institut Jules Bordet Université Libre de Bruxelles

Brussels, 8th of May 2015

Introduction

What are the origins of metastases?


Metastatic cascade

Parallel progression

Naxerova & Jain, Nat Rev2015

Phylogenetics

Tree of life=

Whole exome/genome studies

Table 1 | Genome-wide comparisons of solid primary tumours and their metastases Study Primary cancer Number Genetic relationship Time between resection Evidence between primary tumour of primary tumour of possible of and metastases patients and metastasis metastatic cascade* Jones et al. (2008)32 Colon NA 10 Ranged from synchronous High similarity to 20 months Liu et al. (2009)52 High similarity; primary only 24 Synchronous Prostate Yes available in 5 cases Shah et al. (2009)57 1 9 years Divergent NA Breast Synchronous High similarity in most Yes. in Campbell et al. 13 Pancreas (2010)51 patients; primary tumour not some available in some cases patients Ding et al. (2010)55 1 8 months High similarity NA Breast Yachida et al. (2010)33 Pancreas 7 Synchronous Similarity between metastases No and localized area of primary Navin et al. (2011)49 Breast 1 Not specified High similarity NA Gerlinger et al. (2012)5 Kidney 2 Synchronous Divergent Yes Wu et al. (2012)58 Medulloblastoma 7 Not specified Divergent Yes Haffner et al. (2013)54 1 17 years Similarity between metastases Yes Prostate and localized area of primary

*That is, metastasis giving rise to metastasis; NA for studies that did not assess multiple metastases. Abbreviation: NA, not applicable.

N= 1 pt with only one metastatic site

Naxerova & Jain, Nat Rev2015

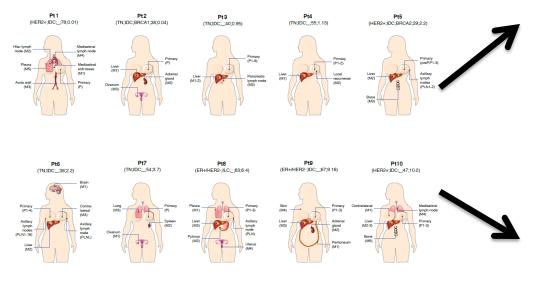
Autopsy-based BC studies

Study	Nr of pts	Main findings
Viadana (1973)	647 (<1970)	Comparison of metastases in young and older pts:1. More extensive disease in younger pts2. More liver, thyroid and bone mets in younger pts
Harris (1984)	92 (1972-83)	Comparison of metastatic pattern IDC vs ILC:1. More lung mets in IDC2. More bone peritoneal, car meningitis mets in ILC
Parham (1989)	85 (1973-86)	Confirmation of cancer-related death in 75% of the cases with BC history : tendency to over-estimate BC as cause of death.
Cummings (2014)	197 (1960-79)	 Pts with CNS mets more likely to present with bone mets More liver and gynecological mets in young pts (n=55): ER and PgR downregulation in mets compared to prim. (n=6): CGH analysis: Prim differs from mets, but mets are similar
Juric (2015)	1	 Comparison of primary and metastatic lesions. Heterogeneity between lesions regarding PTEN alterations, which correlated to response to PI3K inhibition

<u>Aim of the current study</u>= Reconstructing evolutionary trajectories

Autopsy patients

Eligibility criteria:


- (1) Patients died from breast cancer;
- (2) Availability of FFPE tissue blocks from the primary breast tumor, a non-cancerous tissue as germline reference and at least one metastatic sample;
- (3) Minimum 30% tumor cellularity at central pathological review;
- (4) >1µg of dsDNA for from at least the primary breast tumor, a non-cancerous tissue as germline reference and at least one metastatic sample

N=10 patients

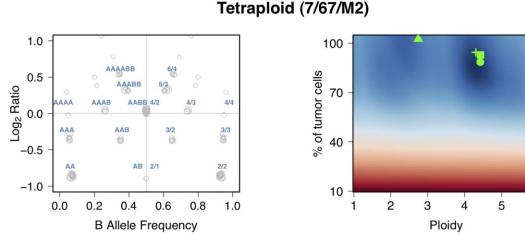
Patients and samples

Time between death and autopsy	Average=2.8 days (range= 1.5 - 4.2)		
Nr of distant metastatic samples/pt	Average=3 (range= 1-4)		
Nr of patients with multiple primary samples	7 (range= 2-8)		
Molecular subtype	5 ER-/HER2-, 2 HER2+, 3 ER+/HER2-		
Age at diagnosis	4 young patients (≤40), 3 between 40-60, 3 older patients >60		
Histologic subtype	9 IDC and 1 ILC		
Treatment	2 treatment naive, 8 with systemic treatment (3/8 with neo-adjuvant treatment)		

Strategy

Substitutions/indels (mutations):

1/ Whole-exome sequencing2/ Deep re-sequencing

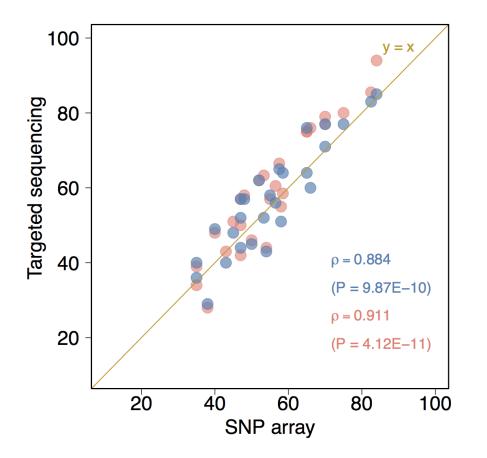

<u>Copy number</u>

alterations (CNAs):

Affymetrix Oncoscan FFPE Express 2.0 assay

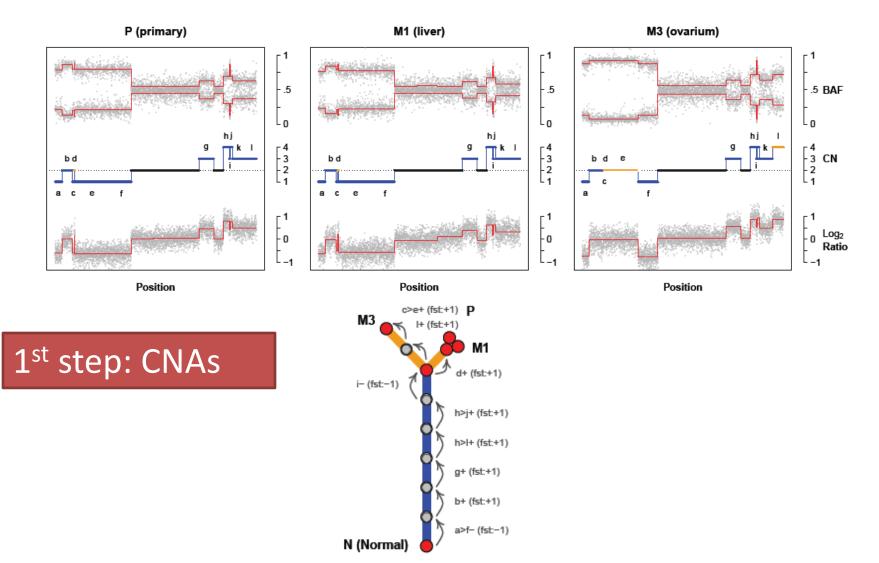
Results

1. Estimation of ploidy and CCF

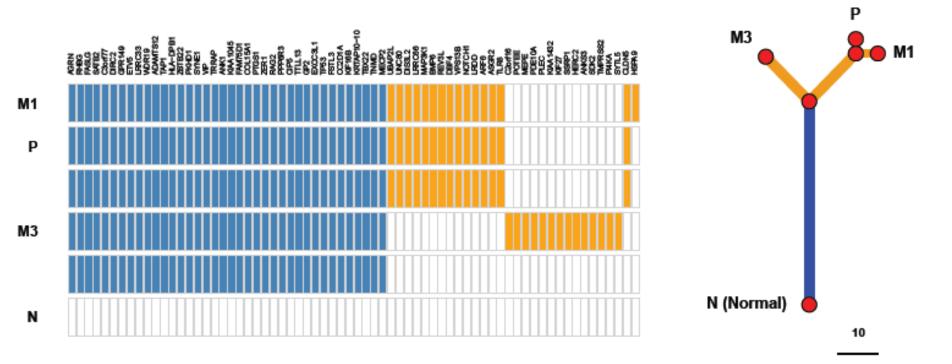


6

- High ploidy samples: potential different estimation according to the algorithm used;
- **Comparison with FACS** analysis
- Only in 4/10: diploid tumors
- Change in ploidy occurred always in primary tumor

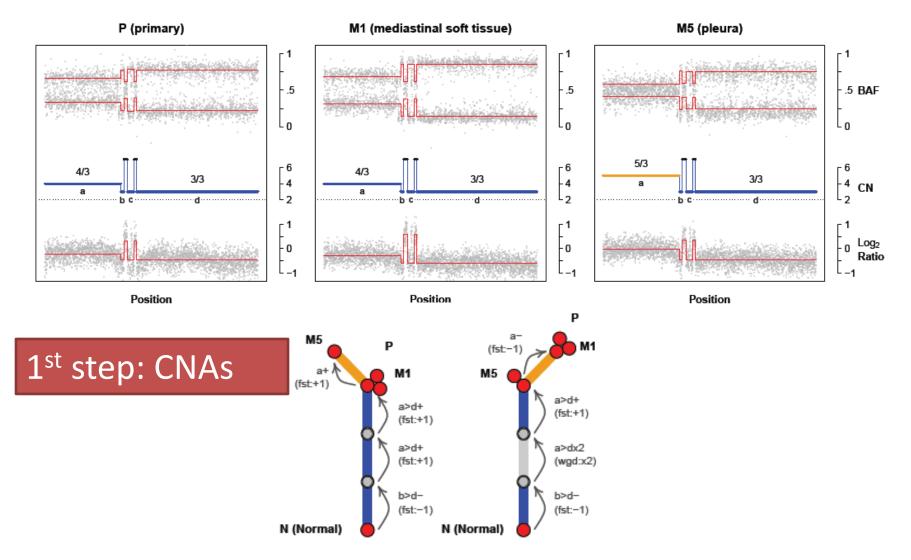

2. Estimation of cancer cell fractions (from SNPs and SNVs)

Cancer cell fraction (%)

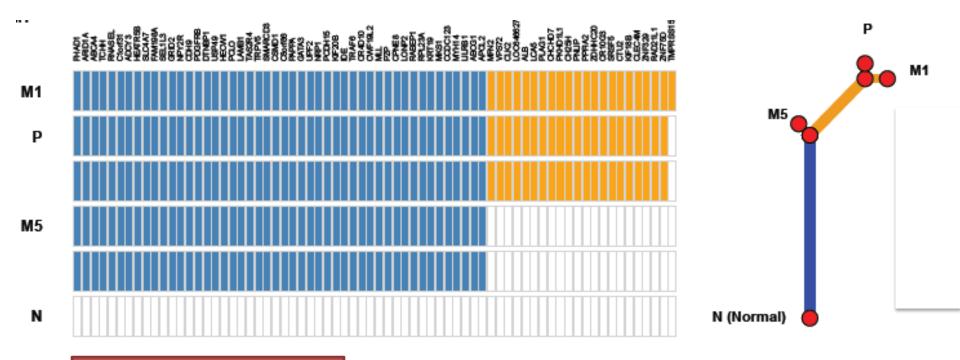


- CCF estimated from SNP arrays with GAP;
- CCF estimated from SNVs with PyClone
- Excellent correlation between both estimates

3. Phylogenetic reconstruction (2n)

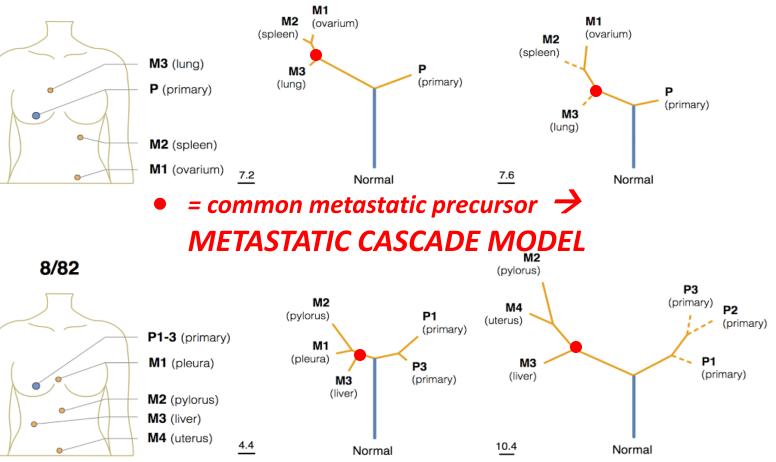


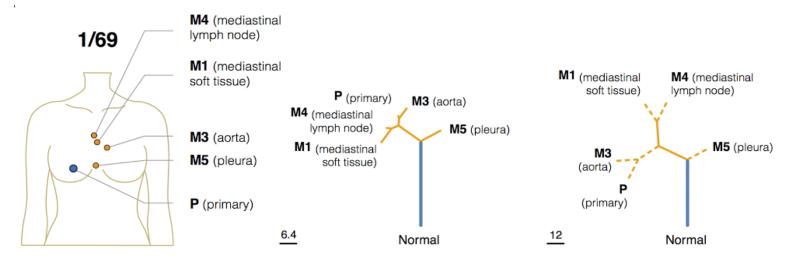
3. Phylogenetic reconstruction (2n)



2nd step: SNVs

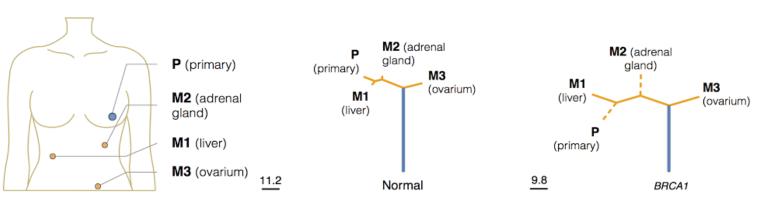
3. Phylogenetic reconstruction (4n)


3. Phylogenetic reconstruction (4n)

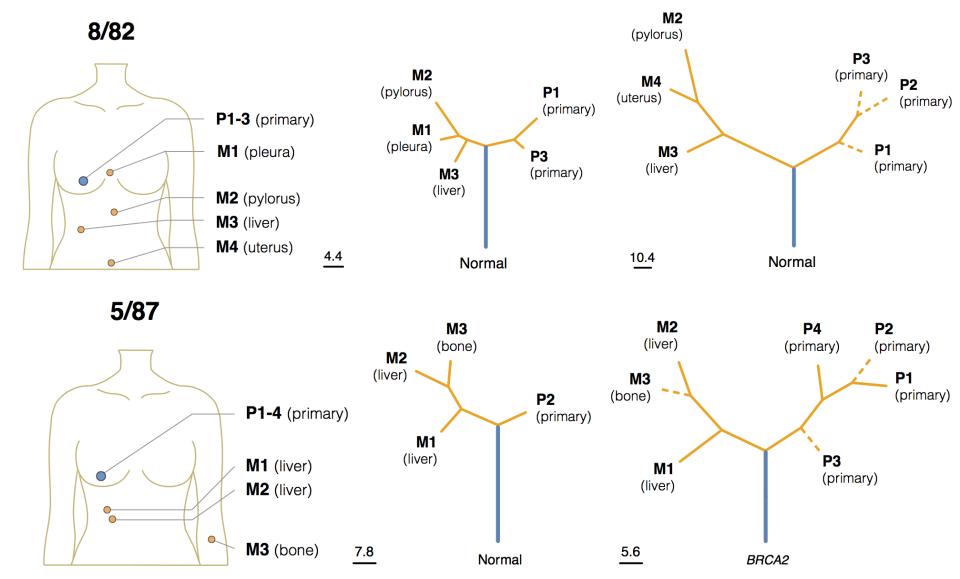

2nd step: SNVs

3. Progression trajectories-I

7/67

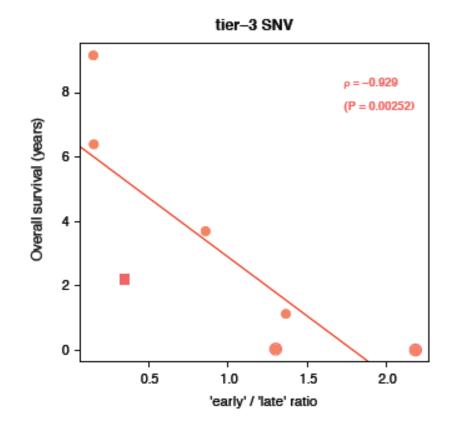


3. Progression trajectories -II



2/57

PARALLEL PROGRESSION MODEL



4. Multiple primary samples

5. 'Early' to 'late' ratio

nature

IFTTFRS

ARTICLES

Genome remodelling in a basal-like breast cancer metastasis and xenograft

Li Ding^{1,2}*, Matthew J. Ellis^{3,4}*, Shungiang Li³, David E. Larson¹, Ken Chen¹, John W. Wallis^{1,2}, Christopher C. Harris¹, Michael D. McLellan¹, Robert S. Fulton^{1,2}, Lucinda L. Fulton^{1,2}, Rachel M. Abbott¹, Jeremy Hoog³, David J. Dooling¹ Daniel C. Koboldt¹, Heather Schmidt¹, Joelle Kalicki¹, Qunyuan Zhang^{2,5}, Lei Chen¹, Ling Lin¹, Michael C. Wendl^{1,2}, Joshua F. McMichael¹, Vincent J. Magrini^{1,2}, Lisa Cook¹, Sean D. McGrath¹, Tammi L. Vickery¹, Elizabeth Appelbaum¹, Katherine DeSchrwer³, Sherri Davies³, Therese Guintoli³, Li Lin³, Robert Crowder³, Yu Tao⁶, Jacqueline E. Snider³, Scott M. Smith¹, Adam F. Dukes¹, Gabriel E. Sanderson¹, Craig S. Pohl¹, Kim D. Delehaunty¹, Catrina C. Fronick¹, Kimberley A. Pape¹, Jerry S. Reed¹, Jody S. Robinson¹, Jennifer S. Hodges¹, William Schierding¹, Nathan D. Dees¹, Dong Shen¹, Devin P. Locke¹, Madeline E. Wiechert¹, James M. Eldred¹, Josh B. Peck¹, Benjamin J. Oberkfell¹, Justin T. Lolofie¹, Feivu Du¹, Amy <u>F. H</u>awkins¹, Michelle D. O'Laughlin¹, Kelly E. Bernard¹, Mark Cunningham¹, Glendoria Elliott¹, Mark I. M. Yarr, I. Donni, M. Thompson Jr⁷, Jennifer L. Ivanovich⁷, Paul J. Goodfellov⁷, Charles M. Perou⁸, Georg M. Varst <u>E</u>, ebecca Aft⁷, Mark Watson⁹, Timothy J. Ley^{12,3,4}, Richard K. Wilson^{1,2,4} & Elaine R. Mardis^{1,2,4}

Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes as that only be the progression of ere we describe the genomic and set of four DNA samples from an African-American being in the rest of the set tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.

Basal-like breast cancer is characterized by the absence of oestrogen was treated with neoadjuvant dose-dense chemotherapy², but signifi-

receptor (ER) expression, the lack of *ERBP* gene amplification, and a third tumour was present in the breast and availary lymph high mitotic index (f) to recur (f) the new of approximation and the set of the accounts for an elevated percentage of breast cancers in patients with African ancestry1. Clinical progress has been limited by a poor understanding of the genetic events responsible for this tumour subtype of her primary tumour biopsied before treatment'. The xenograft in and by limited preclinical models to study the disease . Becau e basallike breast cancer has a highly unstable geron , a whether the fatal metastatic process is deveroy or quation it key after the tumour cells arrive at the distant site, or whether the primary tumour generates cells with a complete repertoire of somatic mutations required for metastatic growth. The rapid advancement of next-generation sequencing technologies allows comprehensive characterization of genomic changes, facilitating the comparison of multiple samples taken from the same patient to address the genetic basis for tumour progression and metastasis.

succumbed to widely disseminated disease. A transplantable humanin-mouse (HIM) xenograft tumour line was generated from a sample Be mannery fat ped was locally invasive and produced metastatic sports in the many fat ped was locally invasive and produced metastatic sports in the many fat and ovaries. Informed consent for full user recording a solution and DNA samples were prepared from the peripheral blood, primary tumour, brain metastasis and an early passage xenograft (harvested 101 days after initial engrafting into the mouse host). Application of the PAM50 intrinsic subtype algorithm identified the primary tumour, brain metastasis and xenograft line as basal-like subtype, with high risk of relapse (ROR) scores4.

Using a paired-end sequencing strategy, we generated 130.7, 124.9,

111.8 and 149.2 billion base pairs of sequence data from genomic

DNA derived from blood, primary tumour, brain metastasis and

Sequence coverage and mutation analysis

Case presentation and previous characterization of samples

A 44-year-old African-American woman was diagnosed with an ERBB2-negative and ER-negative inflammatory breast cancer. She

The Genome Center at Washington University, ²Department of Genetics, ³Department of Medicine, ⁴Steman Cancer Center, ⁵Division of Statistical Genomics, ⁶Division of Biostatistics, 7Department of Surgery and the Young Women's Breast Cancer Program, 9Department of Pathobey and Immunology, Washington University School of Medicine, St Louis, Missouri 63108, USA. ⁶Department of Genetics, Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA. *These authors contributed equally to this work.

Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution

Sohrab P. Shah^{1,2}*, Ryan D. Morin³*, Jaswinder Khattra¹, Leah Prentice¹, Trevor Pugh³, Angela Burleigh¹, Allen Delaney³, Karen Gelmon⁴, Ryan Guliany¹, Janine Senz², Christian Steidl^{2,5}, Robert A. Holt³, Steven Jones³, Mark Sun¹, Gillian Leung¹, Richard Moore³, Tesa Severson³, Greg A, Taylor³, Andrew E, Teschendorff⁶, Kane Tse¹, Gulisa Turashvili¹, Richard Varhol³, René L. Warren³, Peter Watson⁷, Yongjun Zhao³, Carlos Caldas⁶, David Huntsman^{2,5}, Martin Hirst³, Marco A, Marra³ & Samuel Aparicio^{1,2,5}

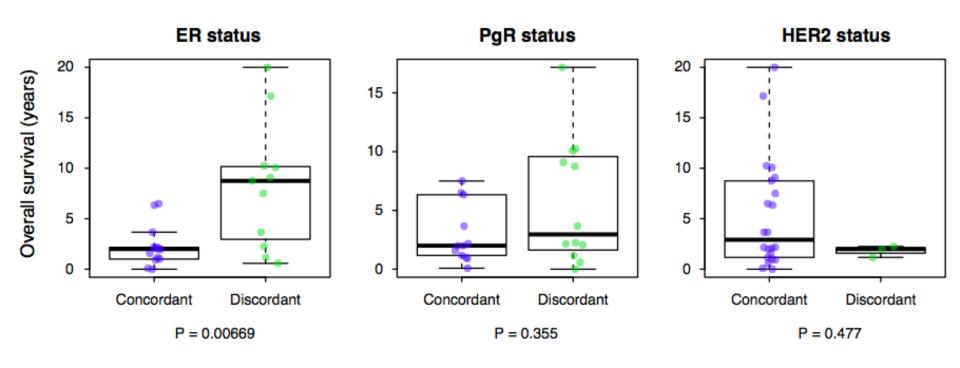
Recent advances in next generation sequencing¹⁻⁴ have made it possible to precisely characterize all somatic coding mutations that occur during the development and progression of individual cancers. Here we used these approaches to sequence the genore est 43- (Sup fold coverage) and transcriptomes of an oestr gen-region enter this or railing ed. We also computed the segmental copy number positive metastatic lobular breast cancer at dept the pour 32. (Supper netry, forbods and Supplementary Table 5a) from aligned somatic non-synonymous coding mutations present in the metastasis, and measured the frequency of these somatic mutations in Stasts and measured the requency of these solutions in DNA from the primary tumour of the same patient, which arose 9years earlier Fiver the 32 mutations (in AFEB1, HA 83, SLC24A4, S3 3 with A 60 whe product of the DNA of the primary tum use can be used as a series of the series of the KIFIC, USP28, MYH8, MORCI, KIAA1468 and RNASEH2A) were present at lower frequencies (1-13%), 19 were not detected in the primary tumour, and two were undetermined. The combined analysis of genome and transcriptome data revealed two new RNAediting events that recode the amino acid sequence of SRP9 and COG3. Taken together, our data show that single nucleotide mutational heterogeneity can be a property of low or intermediate grade primary breast cancers and that significant evolution can occur with disease progression. Lobular breast cance ecotor-positive (1 , also

coding indels and predicted inversions (coding or non-coding; Supplementary Methods); however, all of the events that were validated by Sanger re-sequencing were also present in the germ line en intar Tables 3 and 4). None of the 12 predicted gene reads, and revalidated high level amplicons by fluorescence in situ hybridization (FISH) (Supplementary Table 5b), revealing the presence of a new low-level amplicon in the INSR locus (Supplementary . C. g SN Fig. 3). a al per dsi 🔄 Binomial

ig 3). We identical string SN ivare codel, SN7 Mix (S ple senta 🐨 pl 2, M hods and Supplementary Appendix 1) From the RNA-seq (WTSS-PE) and genome (WGSS-PE) libraries we predicted 1,456 new coding nonsynonymous SNVMix variants (Supplementary Table 2). After the removal of pseudogene and HLA sequences (1,178 positions remaining) and after primer design, we re-sequenced (Sanger amplicons) 1,120 non-synonymous coding SNV positions in the tumour DNA and normal lymphocyte DNA. Some 437 positions (268 unique to WGSS-PE, 15 unique to WTSS-PE, and 154 in common) were confirmed as non-synonymous coding variants. Of these, 405 were new

breast cancers). It is usu breast cancers). It is usually include inter the liate estory and can recur many years after mitiar diagnosis. To inter genomic landscape of this class of tumour, we re-sequenced DNA from a metastatic lobular breast cancer specimen (89% tu cellularity; Supplementary Fig. 1) at approximately 43.1-fold al haploid reference genome coverage (12 paired-end sequence; Supplementary Fig. T le tary Methods). Deep high-throughput warscrip (RNA-sen² methods). (RNA-seq)⁵ performed on the same sample generated 160.9-m reads that could be aligned (Supplementary Table 1, see Supplementary Fig. 2 and Supplementary Methods). The satur of the genome (Table 1) and RNA-seq (Supplementary Tab libraries for single nucleotide variant (SNV) detection is disc in Supplementary Information. The aligned (hg18) reads were to identify (Supplementary Fig. 2) the presence of genomic ab tions, including SNVs (Supplementary Table 2), insertions/ dele (indels), gene fusions, translocations, inversions and copy number alterations (Supplementary Methods). We examined predicted

known as ESR1⁺) subtration of b


Total number of reads	2.922.713.774	182.532.650
Total nucleotides (Gb)	140.991	7.108
Number of aligned reads	2.502.465.226	160,919,484
As and high rest (120.718	6.266
Es nati e prira e	21	0.013
Estatu de concap	114	NA
regions)		
Canonically aligned reads	2,294,067,534	109,093,616
Exons covered	93.5 at >10 reads;	82,200 at 10 reads (see a
	95.7 at >5 reads	Supplementary Table 1)
Reads aligned canonically (%)	78.49	67.79
Unaligned reads	420,248,548	21,613,166
Mean read length (bp)	48.24	38.94

ommon

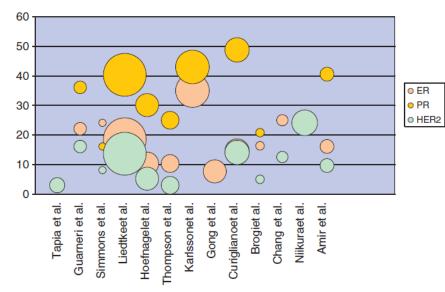
¹Molecular Oncology, ²Centre for Translational and Applied Genomics, ³Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver V521L3, Canada. ⁴Medical Oncology, BC Cancer Agency, 600 West 10th Avenue, Vancouver V521L3, Canada. ⁵Department of Pathology, University of British Columbia, G227-2211 Wesbrook Mail, British Columbia, Vancouver V6T 285, Canada. "Cancer Research UK, Cambridge Research Institute, U Ka Shing Centre, Robinson Way, Cambridge CB2 ORE, UK Dedey Research Centre, BC Cancer Agency, Victoria V8R 6V5, Canada These authors contributed equally to this work.

applicable

6. Discordances ER, PR & HER2

Discordances ER, PgR and HER2

Critical Reviews in Oncology/Hematology 84 (2012) 301-313


Oncology Hematology ncorporating Gerianic Oncology www.elsevier.com/locate/critrevonc

Discrepancies between primary tumor and metastasis: A literature review on clinically established biomarkers

Stéphane Vignot^{a,*}, Benjamin Besse^b, Fabrice André^b, Jean-Philippe Spano^a, Jean-Charles Soria^b

^a Service d'Oncologie Médicale, Groupe Hagpitaller Ptilé Salpérière, Paris, France ^b Unité INSERM U 981, Université Paris Sud, Département de Médecine, Institut Gustave Roussy, Villejuif, France Received 6 February 2012; received in revised form 1 May 2012; accepted 16 May 2012

% of discrepancies

Metastatic progression of breast cancer: insights from 50 years of autopsies

Margaret C. Cummings,^{1,2,3#*} Peter T. Simpson,^{1#} Lynne E. Reid,¹ Janani Jayanthan,¹ Joanna Skerman,² Sarah Song,⁴ Amy E. McCart Reed,¹ Jamie R. Kutasovic,¹ Adrienne L. Morey,⁵ Louise Marquart,⁶ Peter O'Rourke,⁶ Sunil R. Lakhani^{1,2,3}

Biomarker	Proportion of patients (%) with concordant staining		
	of all metastases		
ER	31/55 (56·4%)		
PgR	37/55 (67·3%)		
HER2	53/55 (96·4%)		
Ki67	39/55 (70·9 %)		
p53	40/55 (72·7%)		
CK AE1/AE3	53/55 (96·4%)		
EGFR	49/55 (89·1%)		
c-kit	54/55 (98·2%)		

Messages regarding breast cancer progression

- Autopsies → reconstruction of breast cancer progression;
- Accurate reconstruction needs combination of mutation and copy number data;
- Different progression trajectories are possible in breast cancer (parallel and in cascade);
- Metastases can differ from their primary tumor, especially if the patients developed their metastases many years after initial diagnosis.

Limitations of the study

- Only two time points (diagnosis and death) were investigated;
- Heterogeneity of primary tumor not formally investigated;
- Heterogeneity of treatment received over the course of the disease;
- All agressive cancers (what about more indolent ones?);
- Only genomic changes were investigated;
- Relatively small nr of patients.

Bordet Institute - ULB

David Brown

Françoise Rothé Pierre-Yves Adnet Samira Majjaj Gabriele Zoppoli Christos Sotiriou

Hughes Duvillier Martine Piccart Denis Larsimont

VIB-KUL

Dominiek Smeets Diether Lambrechts

Semmelweis University

- **Borbala Szekely**
- Marcell Szaz Magdolna Dank Gyöngyvér Szentmártoni Nora Udvarhelyi Zsofia I. Nagy Zsofia Farago Anna-Maria Tokes Janina Kulka

Yale University Lajos Puzstai

and...the patients & their family!

121

Les Amis de l'Institut Bordet

