Precision Molecularly-Targeted Therapy of Cancer Cannot (in General) Work Optimally by Itself

Larry Norton, MD

Memorial Sloan Kettering
Cancer Center,
New York

May, 2015

This presentation focuses on four aspects of the topic

The Fundamental Problem

The Fundamental Problem: Precise targeting is appropriate only when the target is solitary and not complicated

A sharpshooter can help you here

...but not here!

Example # 1: Feedback Loops

PI3K signaling involves feedback loops

Inhibiting AKT changes the signaling cascade

Inhibiting AKT changes the signaling cascade, causing an undesired biological effect

Example # 2: Convergent Evolution

Effective PI3Kα inhibition can be thwarted by <u>different</u> mutations that all lead to PTEN loss

D. Juric et al., Nature 2015

A Solution: Phenotypic Targeting

Aberrant proteins are increased in chemotherapy-treated cancer cells, rendering the cells more dependent on stress

Targeting stress chaperones can make sub-curative chemotherapy curative

Blood vessels and leukocytes support the survival of the cancer cells exposed to chemotherapy

S. Acharyya *et al.*, Cell 2012

Disrupting the leukocyte-cancer interaction augments the effects of chemotherapy

Lung metastases

Burden of neo-antigens predicts benefit from PD-1 blockade with pembrolizumab in non-small cell lung cancer

Precision Molecularly-Targeted Therapy of Cancer Will Work Best When Combined With Chemotherapy (= Phenotypic Targeting)

