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Talk Overview

m Intracellular modelling

» gene regulatory networks
m Cell-scale modelling

» in vitro cell migration and retinal angiogenesis
m Tissue-scale modelling

» cancer invasion

m Future perspectives
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Mathematical Modelling

The Zeonions came with the answers to many secrets
of the universe. Vern, regrettably, came with
thick glasses and his deer rifle.
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Mathematical Modelling at IMPAKT 2014

“The participants came with the answers to many secrets
of Breast Cancer. M. Chaplain, regrettably, came with
some mathematics and his equations.”

The Zeonions came with the answers to many secrets
of the universe. Vern, regrettably, came with
thick glasses and his deer rifle.
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The Art of Mathematical Modelling

Definition: Mathematical Model

A mathematical model is a description of a system using mathematical
terminology

The process of developing or creating a mathematical model is known as
mathematical modelling
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Applications of Mathematical Modelling: Weather
Forecasting
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The Hallmarks of Cancer

Cell, Vol. 100, 57-70, January 7, 2000, Copyright ©2000 by Cell Press

The Hallmarks of Cancer Review
Douglas Hanahan® and Robert A. Weinbergt evolve progressively from normalcy via a series of pre-
*Department of Biochemistry and Biophysics and malignant states into invasive cancers (Foulds, 1954).

Hormone Research Institute These observations have been rendered more con-
University of California at San Francisco crete by a large body of work indicating that the ge-
San Francisco, California 94143 nomes of tumor cells are invariably altered at multiple
tWhitehead Institute for Biomedical Research and sites, having suffered disruption through lesions as sub-
Department of Bioclogy tle as point mutations and as obvious as changes in
Massachusetts Institute of Technology chromosome complement (e.g., Kinzler and Vogelstein,
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T he Hallmarks of Cancer

Sustaining proliferative
signaling

Resisting Evading growth
cell death SUPPressors

Inducing Activating invasion
angiogenesis and metastasis

Enabling replicative
immortality

Cell

Hanahan and Weinberg, 2011 PRESS
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Cancer: A Multiscale System

Mark Chaplain (IMPAKT 2014) Multiscale cancer modelling 9th May 2014 9 /28



Intracellular modelling: Gene regulatory networks
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Gene regulatory networks: Negative feedback loops

A generic negative feedback loop: species x produces y which then inhibits
X, in turn reducing levels of y. ..
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Hesl Spatial Stochastic Model
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Hesl Spatial Stochastic Model

P; + protein e P,, (promoter, x,,, nucleus)

Py om, mRNA, (promoter, x,,, nucleus)
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mRNA HLm, ¢, (entire cell, 2)
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Hesl: Experimental Data/ Simulation Results
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Experimental data from Kobayashi et al.! showing Hesl protein levels in murine
embryonic stem cells.

'K obayashi et al. (2009) T he cyclic gene Hesl contributes to diverse di<erentiation
responses of embryonic stem cells Genes Dev. 23, 1870 - 1875
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Corresponding simulation results from the spatial stochastic model*.

'Sturrock, Hellander, Matzavinos, Chaplain (2013) Spatial stochastic modelling of
the Hesl gene regulatory network: intrinsic noise can explain heterogeneity in embryonic

stem cell di<erentiation. J. R. Soc. Interface 10, 20120988
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Intracellular modelling: p53-Mdm2 System
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Experimental data from Lahav et al.? showing p53 and Mdm2 protein levels in
individual cells.

’Lahav et al. (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells.
Nature Genetics 36, 147 - 150
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Intracellular modédlling: p53-Mdm2 System
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Single Cell Migration: Intravasation and Metastatic Spread
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Individual Cell Migration: Tumour-induced Angiogenesis
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Tissue scale modelling: Cancer invasion

cancer cells — MDE?2 — ECM3® <« cancer cells
T — —

Cancer cells, ¢(x,t): secrete MDE, invade ECM, proliferate
ECM, v(x,t): degraded by MDE, re-modelling
MDE, m(x,t): secreted by cancer cells, diffuse, degrade ECM, decay

’matrix degrading enzymes

3extracellular matrix
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Tissue scale modelling: Cancer invasion

2D simulation results, time-dependent adhesion parameters:
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Tissue scale modelling: Cancer invasion
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Tissue scale modelling: Cancer invasion
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Tissue scale modelling: Cancer invasion
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Tissue scale modelling: Cancer invasion
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Tissue scale modelling: Experimental Data
Infiltrative growth pattern (INF) classification®:

J Gastroenterol (2012) 47:1279-1289

INFa i INFb INFc

Fig. 1 Hematoxylin—eosin findings of esophageal cancer invasive and INFc, INFc tumor infiltrates with a pattern of single cells, small
patterns. /NFa tumor extends downward continuously and expan- and large tumor nests, or a trabecular arrangement of tumor cells in
sively from the epithelium, /NFb intermediate pattern between INFa the lamina propria mucosa or submucosa (x40)

“Ito et al. (2012) New invasive patterns as a prognostic factor for superficial
esophageal cancer. J. Gastroenterol. 47, 1279 - 1289
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Tissue scale modelling: Organotypic Invasion Assay
Organotypic assay results:

siC siCOL7

Cancer cell invasion in an organotypic invasion assay. Image on the left shows reduced invasion in a gel with collagen VII. Image
on the right shows an increased invasion into a gel without collagen VII. Collagen VIl is a key ECM component involved in
anchoring cells®.

>Martins et al. (2009) Increased invasive behaviour in cutaneous squamous cell
carcinoma with loss of basement-membrane type VII collagen. J. Cell Sci. 122,

1788-1799
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Tissue scale modelling: Organotypic Invasion Assay

siCOL7
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simulation results with baseline cell-cell adhesion on the left and reduced cell-cell adhesion on the right.
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Future Perspectives

IBM Blue Gene/Q Supercomputer: Interdisciplinary Centre for Mathematical and
Computational Modelling (ICM), Warsaw

10? individual cells...
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Future Perspectives: Creating a Virtual Solid Tumour
.1
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