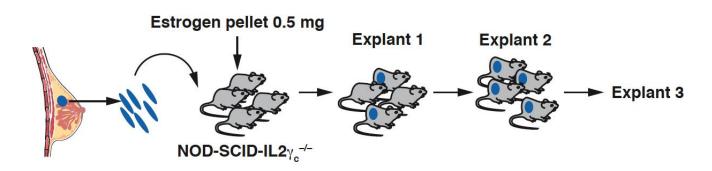


Disclosure slide


- The Walter and Eliza Hall Institute has a commercial agreement with Abbvie (formerly Abbott) and Genentech and receives commercial income related to ABT-199.
- I have no personal financial interest and receive no grant funding from Abbvie or Genentech.

Xenograft models of solid tumours: Problems, pitfalls and future directions

Models to study tumour biology and potential therapeutic agents

Cell Lines	Selected through multiple passages, acquisition of multiple mutations. (MCF-7 c.1970)	
Animal Tumour Models	Genetic modification/ mutagenesis resulting in tumour predisposition. Differences between species.	
Cell line derived xenografts	Selected through multiple passages, acquisition of multiple mutations. Do not recapitulate tumour heterogeneity. Rarely form metastases.	
Patient-Derived Xenografts 'PDX' models	Often recapitulate tumour heterogeneity and behaviour; share genomic features with the primary tumour. May form metastases.	

PDX models – problems and pitfalls

- Only a proportion of primary breast tumours engraft
 TNC > HER2 > Luminal B >> Luminal A tumours
- 'Take rate' likely depends on a variety of factors:
 - Immunodeficient model (NSG ≈ SCID-Beige > NOD-SCID > nude)
 - Source (primary vs metastasis)
 - Site (orthotopic/cleared mammary fat pad, sc fat)
 - Matrigel and stromal cells? (eg MSCs, fibroblasts)
 - Estradiol supplementation often required (helpful for ER⁻ tumours?)
- Tumour latency generally measured over months, making 'real-time evaluation' for patients a challenge
 - Ex vivo tumour culture systems?
- Faithfully recapitulate the tumour genome but may undergo 'genetic drift' or **clonal evolution** on serial passaging
- Lack of immune system renders them
 - Highly susceptible to infection
 - NOD-SCID mice develop thymic lymphoma
 - Compromises immunotherapy-based studies

Differential engraftment between been tumour subtypes

Tumour Subtype	Take rate*	
Triple negative / basal-like	17/28	(60.7 %)
Luminal		
ER+PR+or-	13/108	(12.0 %)
ER-PR+	2/8	(25.0 %)
HER2-positive	5/14	(35.7 %)
Total	37/158	(23.4 %)

Data for 2008 - 2011

François Vaillant

PDX models – problems and pitfalls

- Only a proportion of primary breast tumours engraft
 TNC > HER2 > Luminal B >> Luminal A tumours
- 'Take rate' likely depends on a variety of factors:
 - Immunodeficient model (NSG ≈ SCID-Beige > NOD-SCID > nude)
 - Source (primary versus metastasis)
 - Site (orthotopic/cleared mammary fat pad, sc fat)
 - Stroma, ECM, ligands (eg MSCs, fibroblasts/CAFs, Matrigel, prolactin)
 - Estradiol supplementation often required (helpful for ER⁻ tumours?)
- Tumour latency generally measured over months, making real-time evaluation for patients a challenge
 - Develop predictive indicators? Ex vivo culture systems?
- Faithfully recapitulate the tumour genome but may undergo 'genetic drift' or clonal evolution on serial passaging (can be tracked)
- Lack of immune system renders them
 - Highly susceptible to infection
 - NOD-SCID mice develop thymic lymphoma
 - Compromises immunotherapy-based studies

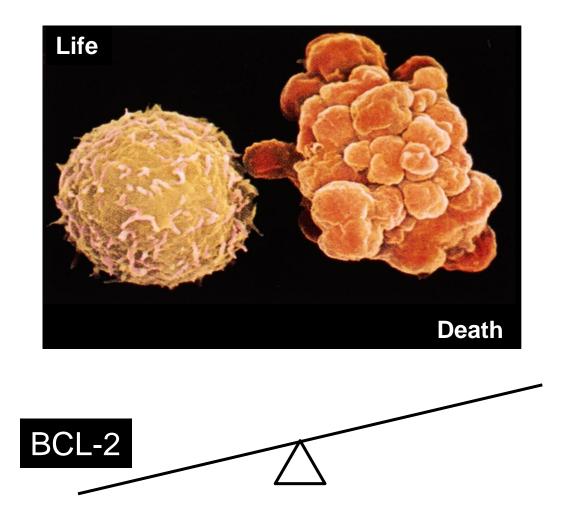
PDX models – opportunities

(1) Recapitulate tumour heterogeneity

- A preferred model for in vivo cancer stem cell studies [Al Hajj et al PNAS 2003]
- Clonal representation is maintained on transplantation [Li et al, Cell Rep 2013]
- Luminal xenografts retain hormone receptor heterogeneity and endocrine responsiveness [Kabos et al Breast Cancer Res Treat 2012]

(2) Amenable to 'discovery' research

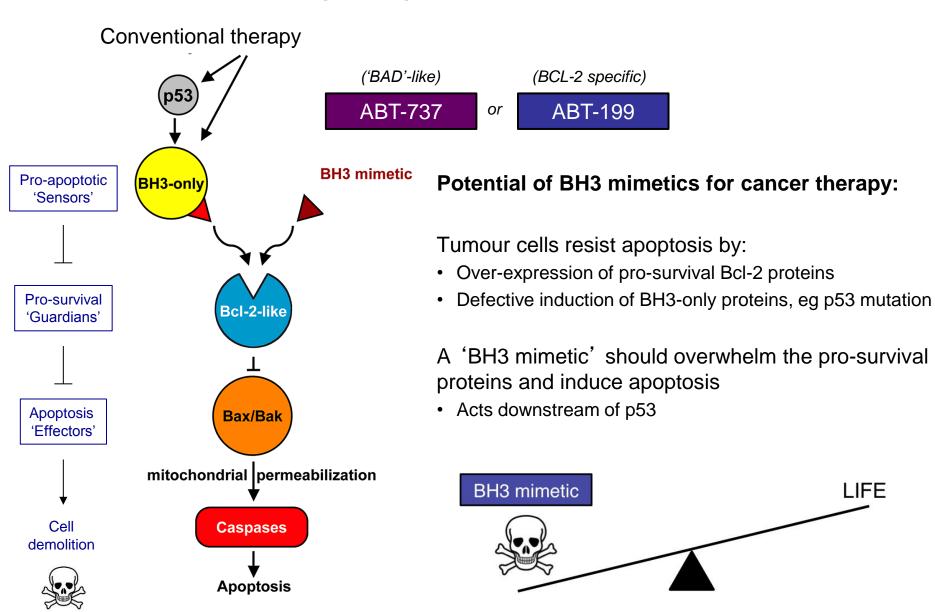
- Early passage (treatment-naïve) PDX models may select for the subset of cells prone to metastasis [Ding et al Nature 2010]
- Enable genomic studies that identify driver mutations (eg ESR1 variants)
- Study metastasis [Marangoni et al *Clin Cancer Res* 2007; De Rose *Nature Med* 2011; Zhang et al *Cancer Res* 2013; Li et al, *Cell Rep* 2013]
- Lentiviral transduction, in vivo imaging and cell tracing, 'humanisation'

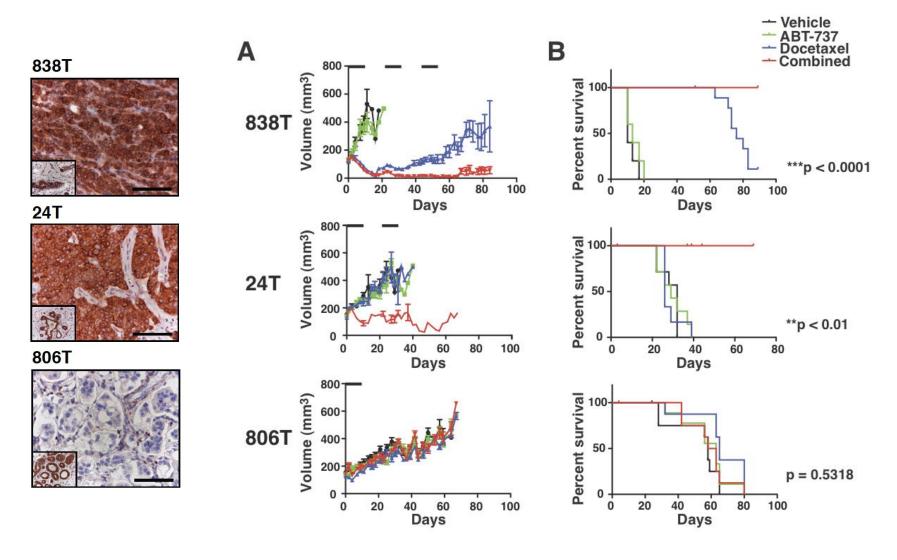

(3) Renewable source of tumour

Tumour sphere assays, Dissociated tumour cultures

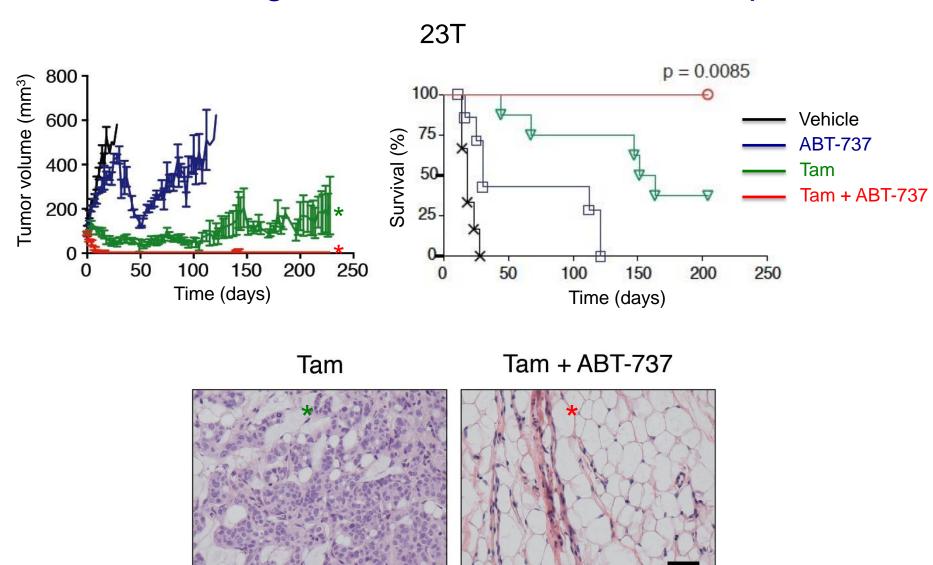
(4) Offer pre-clinical models for evaluation novel therapies (response/resistance)

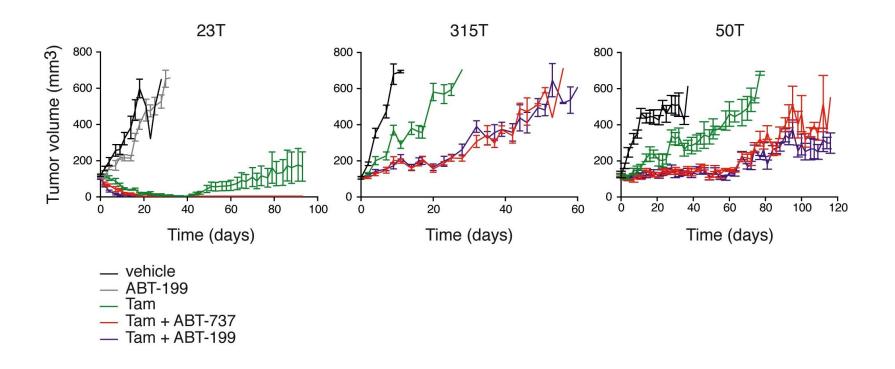
- DLL4 [Hoey et al Cell Stem Cell 2009], CXCR1 [Ginestier et al JCl 2010], Stat3 inhibitors
 [Dave et al Plos One 2012], Notch inhibitors [Schott et al Clin Cancer Res 2013], Estradiol
 [Li et al Cell Rep, 2013]
- BCL-2 inhibitors [Oakes et al PNAS 2012; Vaillant et al Cancer Cell 2013]


BCL-2 orchestrates life and death decisions

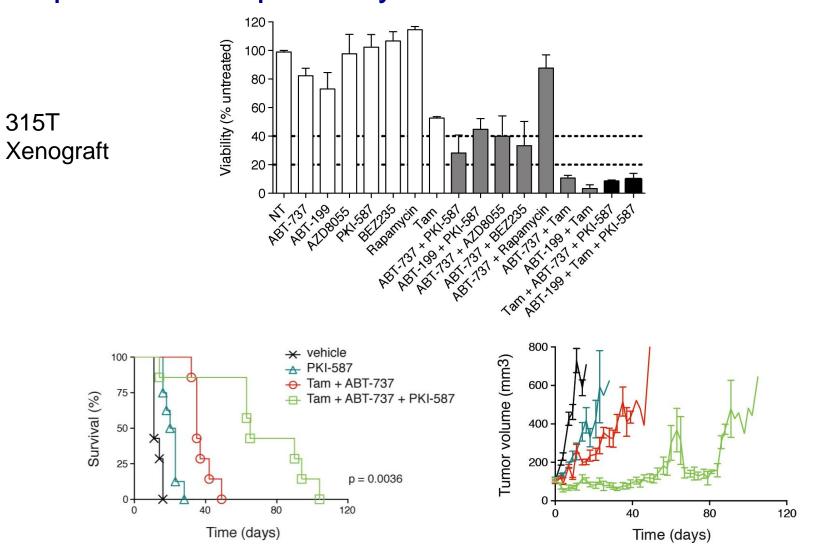

- BCL-2 is overexpressed in ~75% of breast cancer
- Elevated expression often accompanies chemoresistance

Targeting BCL-2 in cancer

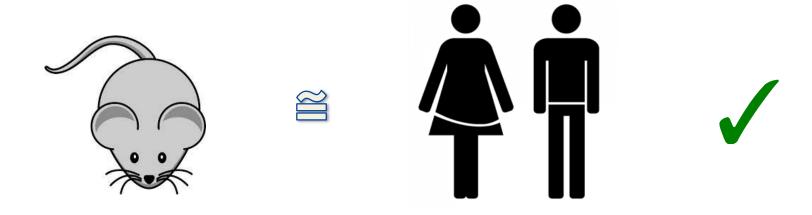

LIFE


The BH3 mimetic ABT-737 sensitizes TNBC xenografts to docetaxel chemotherapy

ABT-737 augments tamoxifen tumour response



The BCL-2 specific inhibitor ABT-199 is also effective in combination with endocrine therapy



'Proof-of-principle' pre-clinical findings that justify transfer to the clinic?

Dual targeting of the BCL-2 and PI3K/AKT/mTOR pro-survival pathways is tolerable and effective

Xenograft models of solid tumours – future directions

A powerful new research tool to

- Study tumour behaviour
- Reveal the potential utility of novel therapies
- Evaluate 'personalised' therapy based on distinct genomic features of the tumour

WEHI - BCL Jane Visvader

Delphine Merino

Tamara McLennan

Ewa Michalak Emma Nolan Bhupinder Pal Anne Rios Julie Sheridan François Vaillant

Past members
Marie-Liesse Asselin-Labat
Samantha Oakes
Elgene Lim

WEHI - Bioinformatics

Gordon Smyth Matthew Ritchie Wei Shi Di Wu

TransBCR Kylie Shackleton

Royal Melbourne Hospital

Leanne Taylor
Matthew Chapman
Michael Christie
Frank Feleppa
Bruce Mann
John Collins
Andrew Roberts (WEHI)
Patients and Clinical Colleagues

Abbvie/GNE

Division of Medicinal Chemistry David Huang Chris Burns Louisa Phillipson

The Qualtrough Family Bequest

The Joan Marshall Breast Cancer Research Fund

