

Clinical Development of Adoptive Cell Therapy

Robert Hawkins Medical Oncology, University of Manchester and The Christie Hospital

NHS Foundation Trust

Adoptive Cell Therapy

- Two basic approaches
 - Natural T cells
 - Isolated from blood
 - Isolated from tumour
 - Genetically Engineered T cells
 - Engineered from blood lymphocytes
 - TCR based receptors
 - Antibody based chimeric receptor

Considerations for Clinical Delivery of ACT

- Complex/Personalised so the efficacy bar will be high
- Need to comply with EU GMP regulations
- Main attractions
 - Short-term treatment
 - Long-term benefit
- Main Drawbacks
 - Complex/Costly
 - Toxicity of supportive therapy
 - Pre-conditioning chemotherapy
 - Supporting Cytokines
- Practical Challenges
 - How to role out to multiple centers

- Overview of Adoptive Cell Therapy
- Setting up a GMP unit for ACT
- Developing TIL therapy for Melanoma in UK
 - Planned Trials
- Engineered T-cell Trials in Manchester

- CEA

- CD19

• EU FP7 ATTACK – Trials targeting NY-ESO-1

Pre-clinical Evidence for TIL Therapy

Rosenberg SA, et al., A new approach to the adoptive immunotherapy of cancer with tumorinfiltrating lymphocytes. Science. 1986 Sep 19;233(4770):1318-21.

Setting This Up in Manchester

Cellular Therapeutics Unit (CTU)

- Move away from classical clean rooms
- Provides a controlled sterile
 environment
- Protects patients cells from infection or contamination
- Allows rapid decontamination with vaporised hydrogen peroxide
- Allows multi product processing
- Closed Systems outside isolators
- REP entirely in WAVE bioreactors

Where are we going with TIL ?

Trials with TIL

- Randomized Phase II trial
 - Salvage Therapy in Melanoma
 - High-Dose IL2 vs LD IL2
 - Single Centre UK Study
- Phase III Trial (PI John Haanen)
 - Randomized Trial vs Ipilimumab
 - Three Centre European Study
 - (Amsterdam, Copenhagen, Manchester)

What is Special About Melanoma Biology?

Many tumour types have correlation of outcome with T-cell infiltration

Non-Synonomous Coding Mutations in Exome Sequences

Extending Cell Therapy to Other Diseases?

Engineered T cells Receptor Development

Why do use first generation CAR?

- TIL can be very effective
- Optimized 1st generation CAR
- No benefit in animal models of 2nd generation CAR in CD19 models
- Toxicity seen with second generation CAR in in CD19 models
- Potentially important to ensure target safe before moving to enhanced receptors

Does CAR Interact with TCR?and is it important for function?

CARs with CD3ζ-transmembrane domain can integrate into the endogenous TCR complex

Α MFEζ

Bridgeman, J.S. et al. J. Immunol. (2010) 184(12):6938-49

Symptomatic Lympho-proliferation

Fully Autologous Mouse Model of CD19-CAR Therapy

Cheadle EJ, et al., Differential role of Th1 and Th2 cytokines in autotoxicity driven by CD19-specific secondgeneration chimeric antigen receptor T cells in a mouse model. J Immunol. 2014 Apr 15;192(8):3654-65.

Clinical Trial Design : Based on other trials - TIL

Assess presence of relevant target

7. Trials designed to assess: Clinical Response Modified Cell Survival Safety

Phase I : 1st Generation CEA CAR T-cell Trial

- 14 patients treated
- Indication of biological and possible clinical activity
- T cell survival limited but some tumour localisation
- Only occurred with full pre-conditioning and high dose cells
- Coincided with maximum cytokine release
- Reversible Lung toxicity ? Cross reacting antigen / low level CEA in lung
- No major responses (although one patient alive > 5 years)
- Trial halted

Overview of CD19 CAR Trial

Summary of Patient characteristics

Patient number	Age	Malignancy	Number of previous therapies	Number of T- cells infused (% transduced)
002	54	DLBCL	3	1x10 ⁹ (25.7)
005	58	MCL	7	1x10 ⁹ (31.5)
006	57	MCL	4	1x10 ⁹ (54.6)
012	74	DLBCL from CLL	3	1x10 ⁹ (22.0)
013	62	DLBCL	2	1x10 ¹⁰ (20.5)
015	61	MZL	3	1x10 ¹⁰ (21.7)
016	52	DLBCL from FL	3	6x10 ⁹ (20.9)

Dose Escalation 10⁹ to 10¹⁰ cells

Rapid Response to Higher Dose CAR T-cells

CD19-013 - Course

- Developed Lymphomatous Meningitis
 - 50 Lymphoma : 1 CAR-T-cell in CSF
- Post Mortem Minimal Disease outside CNS

CD19-015 clinical results

Marginal zone lymphoma

Pre-treatment

Week 12 post infusion

CD3+/CD34+ cells over time

T-cell Survival / Biology

- T-cell survival better than CEA trial
- Evidence of Positive Selection in some patients
- ? Persistence better in DLBCL
 - Known to have strongest B7 Expression

Engineered T-cells Targeting CD19

- First Generation Receptor
- Low dose chemotherapy
- Low dose IL2
- Dose Escalation of Cells
 - Cohort 1 : 2/4 PR
 - Cohort 2: 3/3 PR*
 - Good Persistence of CD19 T-cells ? selection
- Generally Low Toxicity
 - transient neurotoxicity ? mechanism
- Potential to combine earlier in treatment

EU FP7 ATTACK(2)

Background

- Several CAR / TCR shown on target toxicity
- 1G4 TCR Targets HLA-A2 SLLMWITQC Found in NY-ESO-1 and LAGE-1 Study at NCI found high response rate * 4/6 in synovial sarcoma 5/11 in melanoma No On-target Toxicity
- Adaptimmune Developed Lentiviral Vector based on optimised TCR
 - Active in Sarcoma, Myeloma

Two key objectives

- Test Efficacy of ACT targeting NY-ESO-1 in Oesophagogastric cancer
- Test improved methods of cell transduction/expansion
 - Selecting CD62L + cells , expanding in IL7&/IL15

ADAPTIMMUNE

transforming T cell therapy

Robbins et al. J Clin Oncol, 2011: 29; 917-924

ATTACK: Trials

OG Phase II

- Up to 28 patients
- Designed to establish RR in common solid Tumour
- Opened November 2014

Melanoma Phase II

- Up to 34 patients
- Designed to compare optimised production with Central Memory Type T-cells with Standard production
- Both Centralised Production
 - Manchester & Amsterdam

Key Strategic Objective:

To establish feasibility of multi-centre international trials with centralized production

Conclusions

- Cell Therapy has potential for wide range of cancers
 - Can be extremely effective and produce <u>durable</u> benefits
 - *May* be so effective because they target mutated antigens (truly tumour specific)
 - Targeting multiple targets may also be important
 - It is relatively complex but processes becoming standardised
- Engineered Cell Therapy key challenges
 - Potentially very effective
 - Risk of "on-target" toxicity
 - Appropriate Clinical Targets need to be defined
- Challenges with Deliverability remain
 - Centralised vs Automated "Bedside" Production
- Engineering T-cells further to enhance efficacy and improved deliverability may facilitate improved clinical processes

Cellular Therapeutics Unit

Ryan Guest Natalia Kirilova - CTL Julie Duckworth - CTL Martine Thomas - CTL Fiona Baluwa

<u>GMP assays & GCLP Clinical</u> <u>Monitoring Group</u>

Dominic Rothwell Debbie Burt

Experimental

<u>Cellular Therapy Group</u> David Gilham Eleanor Cheadle Vicky Sheard John Bridgeman - CTL

CTU Design & Implementation

Ryan Guest Nikki Price

KAY KENDALL LEUKEMIA FUND

ADAPTIMMUNE

transforming T cell therapy

Acknowledgements

<u>Clinical Cell Therapy</u>

Fiona Thistlethwaite Was Mansoor Manon Evans Shien Chow Lisa Bowden Helen Ferns

<u>Melanoma</u> Group

Paul Lorigan Jackie Hodgetts

<u>Christie Hospital</u> Andrea Spencer-Shaw Angela Cramer

Sponsor/Christie Clinical Trials Unit

Ian Emerson Phil Barley Angela Ball

GMP TIL Harmonisation Team

Bianca Heemskerk – NKI-AVL Joost vd Berg – NKI-AVL Marco Donia – CCIT/Herlev Hospital Ryan Guest – University of Manchester

The Christie

Research Management

Nicola Price - CTL Helena Kondryn

TIL Advisors

Mark Dudley Michal Besser

<u>Surgeons</u>

Aali Sheen Piotr Krysiak Gary Ross Vijay Ramani

<u>Adaptimmune</u>

Daniel Williams Helen Tayton-Martin Dominic Smethurst

ADOPTIVE ENGINEERED T CELL TRIALS TO ACHIEVE CANCER KILLING

NHS Foundation Trust