Tumor Site Immune Modulation Therapy

Lieping Chen, MD, PhD
United Technologies Chair in Cancer Research
Professor of Immunobiology, Dermatology and Medicine
Director of Cancer Immunology
Disclosures

• Consultant: MedImmune, Pfizer, Symphogen, Boehringer Ingelheim

• Sponsored research: Amplimmune, Eli Lilly
Tumor Site vs. Systemic Immune Modulation

Tumor site modulation:

PD-L1/PD-1

Systemic modulation:

CTLA-4, Lag-3, Tim-3, 4-1BB, OX40, etc.
The B7-H1/PD-1 pathway in tumor site immune modulation

Cancer

APCs

Lymphoid Organs

IFN-\(\gamma\)

PD-1

B7-H1 (PD-L1)

\(T_E\)
The B7-H1/PD-1: A “peace keeper” pathway

- Low level of B7-H1 in normal cells and tissues
- Up-regulation of B7-H1 in tissues by neighboring T-cells via IFN-γ
- B7-H1 suppresses T cell activity via PD-1 to control inflammation
- Over-expression of B7-H1 by cells in tumor site to prevent immune attack
PD-1/PD-L1 antibody therapy

- Regression of large solid tumors
- A therapy for a broad spectrum of human cancer
- Durable response
- Tolerable toxicity
What are the next steps?

- A therapy for a broad spectrum of human cancer
- Predictive biomarkers to enrich responders
- Frontline therapy (chemo/radiation-free)
- Treatment of early diseases
- Mechanism-based combination therapy
<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Single Agent</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma (n>2,000)</td>
<td>40-50%</td>
<td>>60%</td>
</tr>
<tr>
<td>Lung cancer (n>1,000)</td>
<td>20-35%</td>
<td></td>
</tr>
<tr>
<td>Renal cancer (n>200)</td>
<td>40-55%</td>
<td></td>
</tr>
<tr>
<td>Gastric cancer (n>50)</td>
<td>~30%</td>
<td></td>
</tr>
<tr>
<td>Bladder cancer (n>30)</td>
<td>~50%</td>
<td></td>
</tr>
<tr>
<td>Head & neck cancer (n>30)</td>
<td>~30%</td>
<td></td>
</tr>
<tr>
<td>Hodgkin’s/non-Hodgkin’s (n>50)</td>
<td>~50%</td>
<td></td>
</tr>
<tr>
<td>Colorectal cancer (n>50)</td>
<td><10%</td>
<td></td>
</tr>
<tr>
<td>Prostate cancer (n>50)</td>
<td><10%</td>
<td></td>
</tr>
</tbody>
</table>

With durable clinical responses and <5% autoimmune toxicity
What are the next steps?

• A therapy for a broad spectrum of human cancer
• Predictive biomarkers to enrich responders
• Frontline therapy (chemo/radiation-free)
• Treatment of early diseases
• Mechanism-based combination therapy
Membrane PD-L1 on Tumor Is A Potential Predictive Biomarker for Response to Anti-PD-1/PD-L1 therapy

PD-L1 staining patterns

- Negative or Cytosolic only (n=18)
- Membranous (n=23)

NSCLC (17)
Mel (30)
RCC (9)
CRC (8)
CRPC (4) (n=41)

Clinical Benefit Rate (CR+PR+SD)

= 6%
1/18 responders

= 48%
11/23 responders

Taube et al, Clin Cancer Res. 20:5064, 2014
Challenges to use B7-H1 expression in tumor site as a biomarker

- Heterogenic expression
 - Limited size of biopsy specimens
 - Timing
 - Denatured B7-H1 protein in FFPE

- Future approaches
 - In vivo imaging
 - CTC
Somatic mutation frequencies in exomes from 3,083 tumor–normal pairs

High ORR

Low ORR
What are the next steps?

- A therapy for a broad spectrum of human cancer
- Predictive biomarkers to enrich responders
- Frontline therapy (chemo/radiation-free)
- Treatment of early diseases
- Mechanism-based combination therapy
What are the next steps?

• A therapy for a broad spectrum of human cancer
• Predictive biomarkers to enrich responders
• Frontline therapy (chemo/radiation-free)
• Treatment of early diseases
• Mechanism-based combination therapy
B7-H1 expression and TILs in lung cancer by disease stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>N</th>
<th>TILs</th>
<th>B7-H1<sup>hi</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>169</td>
<td>44%</td>
<td>33%</td>
</tr>
<tr>
<td>II</td>
<td>102</td>
<td>40%</td>
<td>34%</td>
</tr>
<tr>
<td>III</td>
<td>129</td>
<td>35%</td>
<td>21%*</td>
</tr>
<tr>
<td>IV</td>
<td>44</td>
<td>24%</td>
<td>23%*</td>
</tr>
</tbody>
</table>

Total 444 patients with non-small cell and small cell lung cancer in both Yale and Greece cohort were analyzed

Velcheti et al, Lab Invest 2014
What are the next steps?

- A therapy for a broad spectrum of human cancer
- Predictive biomarkers to enrich responders
- Frontline therapy (chemo/radiation-free)
- Treatment of early diseases
- Combination (mechanism-based)
PD-L1 expression/TIL infiltration in 110 human melanoma and their functional implications

I
B7-H1 -
TIL-
41%

II
B7-H1+
TIL+
38%

III
B7-H1-
TIL+
20%

IV
B7-H1+
TIL-
1%

Lack of inflammation Adaptive resistance other inhibitors? Intrinsic induction

PD-L1 expression pattern in 457 lung cancer (tissue microarray analysis)

Velcheti et al, Lab. Invest. 2014
Mechanism-based combination therapy

TIL-/PD-L1- (lack of inflammation): anti-CTLA-4, local radiation, chemoattraction, cancer vaccine, adoptive T cell therapy

TIL+/PD-L1+ (adaptive resistance): Anti-PD-1 +/- anti-PD-L1, new inhibitory pathways

TIL+/PD-L1- (non-PD-L1 mediated immune tolerance): New inhibitory pathways

TIL-/PD-L1+ (intrinsic induction of PD-L1): EGFR inhibitors etc.
Platforms for discovery of tumor site
T-Cell inhibitory pathways

Over-expressed molecules of human cancer
(identified by microarray, proteomics and bioinformatics)

T-Cell Activity Array

The Receptor Array

Immunobiology *in vitro* and *in vivo*

Mouse tumor /PDX models