Adoptive T-Cell Immunotherapy

> James Yang Surgery Branch, NCI November 21, 2014

Adoptive T-Cell Therapy: Concept and Principles

- Identifying and transferring tumorreactive T-cells activated and expanded in vitro is a direct way to achieve the same goal as vaccines, cytokines, etc
- This permits the use of reagents and methods perhaps not tolerated in vivo
- This also allows independent manipulation of the recipient to optimize conditions for the infused T-cells

T-Cell Adoptive Therapy: Concept and Principles

- Components of adoptive cellular immunotherapy:
 - T-cell repertoire recognizing tumor associated antigens
 - Host immunosuppression
 - Cytokine support
 - Antagonists of immune inhibition in the tumor microenvironment

T-Cell Adoptive Therapy: Concept and Principles

 Components of adoptive cellular immunotherapy:

 T-cell repertoire recognizing tumor associated antigens

- Host immunosuppression
- Cytokine support
- Antagonists of immune inhibition in the tumor microenvironment

Melanoma Tumor Infiltrating Lymphocytes (TIL)

- Human melanomas frequently contain resident T-cells that can recognize the autologous tumor
- These can be expanded in vitro using IL-2 and anti-CD3
- This consistent source of tumorreactive T-cells allowed the development of the field of adoptive cell transfer

Melanoma TIL (Tumor Infiltrating Lymphocytes)

Fresh digest

One week

Two weeks

Cyclophosphamide + Fludarabine Non-Myeloablative Chemotherapy

CR 99+ months

Nov 10, 2003

Feb 9, 2012

Pre-Treatment

11 Months

TIL for Metastatic Melanoma

- Between 2000 and 2007, 93 patients with measurable metastatic melanoma were treated with a preparative lymphodepleting regimen followed by TIL and IL-2
- 86% had visceral metastases
- 83% had prior IL-2
- Only 2 patients were treated twice and there was one patient death during treatment due to sepsis

Impact of prior therapy on the response to ACT using selected TIL

Aug 2010

May 2011

Oct 2012

New TIL Protocol

- Beginning March 2011, 101 patients were randomized to receive TIL and IL-2 after either Cy-Flu or Cy-Flu-TBI
- No treatment related mortality
- Long-term results pending and responses still evolving
- Interim overall RR for all pts is 54% with 17% CR

Tumor Associated Antigens

 Using tumor-reactive T-cells and expression cloning, over 100 tumorassociated antigens recognized by T-cells have been identified by multiple investigators

Tumor-Associated Antigens Recognized by T-Cells

- Melanocyte/melanoma differentiation antigens (MDA: MART1, gp100, tyrosinase, TRP 1/2)
- Tumor testis antigens (NY-ESO1, MAGE, PRAME, SSX families)
- Overexpressed normal proteins (TERT, mesothelin)
- Viral oncoproteins (E6/E7, Merkel's)
- Proteins containing tumor specific mutations (B-catenin, PPP1R3B)

Responses to TCR-Engineered PBL Targeting MDA

- Two protocols targeting MART-1 and gp100 with TCR-transduced PBL showed response rates of 30% and 19% respectively
- 81% of patients had rashes with melanocyte destruction, 42% developed uveitis and 42% experienced impaired hearing, indicative of MDAmediated autoimmunity

Targeting Melanocytic Proteins: Anti-MART1 TCR-Engineered PBL

Pre-Treatment

⁵⁺ Months

PBL with TCR Targeting CEA

Effective attack on normal self-antigens may cause unacceptable autoimmunity

Can Other Defined Melanoma Antigens Mediate Complete Regressions?

- 22 patients with metastatic melanoma were given PBL transduced with a TCR recognizing NY-ESO-1 (with Cy-Flu conditioning and IL2)
- The overall RR was 50% with:
 - 4 CRs: durations 51+,41+,26+,25mo

- 7 PRs: durations 22+,10,8,5+,5,4,3mo

No autoimmune toxicities were seen

Gene Therapy with Anti-NY ESO1 TCR (Melanoma)

December 2009

March 2012

Targeting CD19

- Autoimmune B-cell destruction may be an acceptable toxicity when treating B-cell malignancies
- Anti-CD19 chimeric antigen receptor (CAR) used with preparative Cy-Flu but no IL-2
- Eight evaluable pts with heavily pretreated DLBCL or PMBCL
- 4 CR and 2 PR

Kochenderfer, JCO 2014

Primary Mediastinal B-Cell Lymphoma

Pre-Treatment

22 Months

Future Targets for Receptor Gene Therapy

Chimeric Antigen Receptors

- Mesothelin
- EGFR vIII
- VEGFR2
- GD2
- Other CD Ags for hematological CA
- T-Cell Receptors
 - WT-1
 - MAGE family
 - Thyroglobulin
 - · ???

Clinical Observations on Melanoma Patients Responding to TIL

- The vast majority of melanoma TIL contain anti-MDA reactivity
- Of the 93 patients given TIL and followed long term, there were 52 objective responders and 20 of these responses were ongoing at 5 years
- Only one of these patients developed uveitis and auditory symptoms indicative of MDA-mediated autoimmunity

What are the Cogent Tumor-Associated Antigens Recognized by TIL?

- X Melanocyte/melanoma differentiation antigens (MDA; MART1, gp100, tyrosinase, TRP 1/2)
- Y Tumor testis antigens (NY-ESO1, MAGE, PRAME, SSX families)
- X · Overexpressed normal proteins (TERT)
 - Proteins containing tumor specific mutations (B-catenin, PPP1R3B)

What are the Cogent Tumor-Associated Antigens Recognized by TIL?

- Melanocyte/melanoma differentiation antigens (MDA; MART1, gp100, tyrosinase, TRP 1/2)
- Tumor testis antigens (NY-ESO1, MAGE, PRAME, SSX families)
- Overexpressed normal proteins (TERT)
- Proteins containing tumor specific mutations (B-catenin, PPP1R3B)

Somatic mutation frequencies observed in exomes from 3,083 tumour-normal pairs.

Strategy:

Grow reactive TIL, identify MHC restriction

Whole exome sequence autochthonous tumor

Identify all potential 9-mers and 10-mers that could contain each mutated AA-residue

Rank for predicted peptide-MHC binding by algorithm

Synthesize top binding candidate peptides

Screen for recognition by TIL

KWSAPQQNFLQGKTSSVVEM NRGPAYMFSDRSTSLSIEEER NNIGDNIFFSSLSLLYALSMV **AVTDFLVAVLVMPFSIVYIVR** LFSCSVVDVFSQLNQSFEIIK RQAGDDFVESSILDAVQRVDS GNVAPKTPAGRLFCVFYGLFG SLSLAPLSPRAPSEDVFAFDL **OMIAVILGSLFLIASVTWLLW** ICLPGTSSDYNLMDGDLGLIS FPDTLLGDPGRRVRFFDPLRN ICFAPYHFSFPLDFLVKSNEI CMEKFDKKRFRYIILKOKFLE **KKSLADEAEVHLKFSAKLHSE** NILSAFPFLOEYTVKLSNIPT LQLPLFCLFLGIYTVTVVGNL MFFKDIEEQYPTSLACVEIVN GGKELLADQNIKFIDPFCKIA QSTLHSLSTSSSSVTLLLALM OSOGILNAMITKISNELOALT RALGTLLHTNLRIKRDSQGEL FPDTLLGDPGRRVRFFDPLRN LFSCSVVDVFSQLNQSFEIIK CEMLSILALVGVLHPFYRSNN **QSQGILNAMITKISNELQALT** KNLTEEMAGLDETIAKLTKEK NGIPAEYTAPHPHPAPEYTGQ **VDLAITICIVINTLFMAMEHY** LQLPLFCLFLGIYTVTVVGNL YQRGHLPTGGHLAVCHFPCLL

KWSAPQQNFLIGKTSSVVEM NRGPAYMFSDCSTSLSIEEER NNIGDNIFFSILSLLYALSMV AVTDFLVAVLMMPFSIVYIVR LFSCSVVDVFFQLNQSFEIIK RQAGDDFVESFILDAVQRVDS **GNVAPKTPAGHLFCVFYGLFG** SLSLAPLSPRVPSEDVFAFDL **OMIAVILGSLILIASVTWLLW** ICLPGTSSDYHLMDGDLGLIS FPDTLLGDPGWRVRFFDPLRN ICFAPYHFSFSLDFLVKSNEI CMEKFDKKRFCYIILKOKFLE **KKSLADEAEVYLKFSAKLHSE** NILSAFPFLQKYTVKLSNIPT LQLPLFCLFLEIYTVTVVGNL MFFKDIEEQYLTSLACVEIVN **GGKELLADONFKFIDPFCKIA OSTLHSLSTSISSVTLLLALM** OSOGILNAMIAKISNELOALT RALGTLLHTNVRIKRDSQGEL FPDTLLGDPGWRVRFFDPLRN LFSCSVVDVFFQLNQSFEIIK CEMLSILALVRVLHPFYRSNN QSQGILNAMIAKISNELQALT **KNLTEEMAGLNETIAKLTKEK** NGIPAEYTAPYPHPAPEYTGQ VDLAITICIV *NTLFMAMEHY LQLPLFCLFLEIYTVTVVGNL YQRGHLPTGGRLAVCHFPCLL

var AA

Exomic sequencing of melanoma 2369 (570 mutations; 10830 Candidate Peptides)

			Affinity		
<u>Rank</u>	<u>Peptide</u>	Mutation	<u>(nM)</u>	Gene	<u>IFN-γ (pg/ml)</u>
1	FSDYYDL <u>S</u> Y	117 G to S	2	C22orf33	<30
2	LTDDRLFTC <u>Y</u>	1005 H to Y	3	PLEKHM2	10400
3	YSSAL <u>D</u> LCY	621 N to D	5	GRIN3B	<30
4	<u>F</u> SDKKVGTY	688 L to F	5	PLCB1	<30
5	HSEYSSFF <u>Y</u>	603 H to Y	6	HEG1	<30
6	CSNF <u>L</u> LLAY	84 S to L	7	BAI3	<30
7	ESDKEE <u>L</u> VGY	332 F to L	7	MPP4	<30
8	CTDT <u>Y</u> MLELF	191 H to Y	8	OR4C46	<30
9	FTGTI <u>S</u> VMY	60 P to S	12	UEVLD	<30
10	QTQSVVF <u>L</u> Y	156 S to L	13	COL9A1	<30
11	MSSYIAS <u>F</u> TY	356 L to F	14	LST-3TM12	<30
12	CTDT <u>Y</u> MLEL	191 H to Y	22	OR4C46	<30
13	LL <u>D</u> LMAYDRY	117 G to D	22	OR2T2	<30
14	SSDSQE <u>E</u> NY	117 G to E	23	MEOX2	<30
15	LTSMAYD <u>C</u> Y	122 R to C	31	OR8B3	<30
16	YTDF <u>H</u> CQYV	176 P to H	49	PPP1R3B	13400
17	WADWGHR <u>T</u> Y	3344 A to T	51	LRP2	<30
18	FTMVI <u>L</u> YVVY	219 S to L	54	LRRC3B	<30
19	CVDSPPPL <u>F</u> F	528 S to F	71	C15orf2	<30
20	V <u>S</u> DGFTAVM	198 P to S	85	RNPEP	<30

Limitations of Peptide Prediction Algorithms

- Need to know presenting MHC allele
- Many candidate peptides are not processed by the protoeasome
- Labor intensive to synthesize and test all possible candidate peptides
- (Insertion and deletions not considered)

Tandem minigene (TMG):

String of minigenes encoding the mutated AA flanked by 12 AA

All potential mutated epitopes (up to 13-mers) and all MHC alleles are tested for processing, presentation and recognition

Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer

Science, May 2014

Eric Tran,¹ Simon Turcotte,¹* Alena Gros,¹ Paul F. Robbins,¹ Yong-Chen Lu,¹ Mark E. Dudley,¹† John R. Wunderlich,¹ Robert P. Somerville,¹ Katherine Hogan,¹ Christian S. Hinrichs,¹ Maria R. Parkhurst,¹ James C. Yang,¹ Steven A. Rosenberg¹‡

43 yo F with cholangiocarcinoma refractory to chemotherapy and metastatic to lungs and liver Treated with bulk TIL empirically with minimal response **Tumor WES showed 26 non-synonymous mutations** Screened TIL against tandem minigenes and found a mutation (*mut*-ERBB2IP) reactive T-cell culture **Retrospectively, first TIL culture contained 10 billion of** these T-cells (+ 30 billion unreactive T-cells) New culture with 120 billion of these CD4 cells (95% pure) grown and given

Tandem minigene (TMG): String of minigenes encoding the mutated AA flanked by 12 AA

•Three Tandem Mini-Genes (TMGs) generated for Pt. MB

TMG-1	TMG-2	TMG-3
ALK	RAP1GDS1	SENP3
CD93	RASA1	LHX9
FRBB2IP	RETSAT	KLHL6
ECER1A	SEC24D	AR
	SLIT1	PDZD2
GRACHI	TARBP1	HLA-
KIF9	TGM6	DOA
NAGS	TTC39C	LONRF3
NLRP2	POU5F2	
RAC3		

•Only TMG-1 induces IFN-g secretion and upregulation of the CD4+ T-cell activation marker OX40

•Co-culture TIL + TMG-APC: IFN-g ELISPOT assay

•Flow cytometry

IFN-g ELISPOT assay: Minigenes in TMG individually 'back-mutated' to w.t.

Tumor Burden (RECIST)

Treatment #1: Liver

Pre-Treatment

7 Months

Treatment #2: Liver

Pre-Treatment

8 months

Treatment #1: Lungs

Pre-Treatment

7 Months

Treatment #2: Lungs

TIL From Colon Cancer

- Metastatic colon cancer (liver, lung, spleen, peritoneum)
- Prior Tx: FOLFOX + bevacizumab, FOLFIRI, FOLFOX + panitumumab, RFA, regorafenib
- Whole genome sequencing of liver lesion: 119 non-synonymous mutations
 - 1. 24 fragment cultures of TIL grown
 - 2. Nine TMGs synthesized encoding mutations

TMG	# minigenes		
1	16		
2	16		
3	16		
4	15		
5	16		
6	15		
7	15		
8	3		
9	7		

Multiple TIL Cultures Display Reactivity Against TMG-1

Co-culture of TIL fragments with RNA transfected DCs

Eric Tran

• Mutation-reactive T cells can be detected in patients with metastatic gastrointestinal cancers

		# of mutations	Mutation Reactive	Mutated gene		
Patient	Cancer	assessed	T cells detected?	recognized	T cell	Notes
(3737)	Cholangio	26	Y	ERBB2IP	CD4	Multiple mutation- reactive CD4 T-cell clones
(3942)	Rectal	140	Y	NUP98 KARS GPD2	CD8 CD8 CD4	
(3971)	Colon	119	Y	CASP8	CD8	
(3978)	Cholangio	37	Ν	N/A	N/A	Lowering mutation call threshold
(4007)	Colon	265	Y	TBD	CD8	Potentially two reactivities

Number of mutated T cell antigens identified in patients with Melanoma by whole exome sequencing

Patient	Tumor type	ID	# of mut. antigens identified	# nonsynon mutations
DA	mel	3713	10	5549
TQ	mel	3466	5	4477
MB	mel	3919	5	1252
DS	mel	2369	4	740
BC	mel	2098	3	448
DD	mel	3903	2	499
КТ	mel	2556	2	908
RC	mel	3309	2	1674
AH	mel	2224	2	1812
RJ	mel	2359	1	299
RR	mel	3868	1	1167
SN	mel	3703	1	540
DW	mel	2591	1	379
IG	mel	3926	0	411
КА	mel	3702	0	574
EW	mel	2133	0	1215

Lung Cancer TIL

- TIL grown from intramuscular metastasis
 24 fragment-derived cultures
- WES showed approximately 270 nonsynonymous mutations
- 18 TMGs synthesized and expressed in autologous DCs
- TIL cultures vs TMG assay performed

IFN-g Secretion

TIL Fragment Cultures

Isolation of Reactive T-Cells by Sorting for Activation Markers

- 4-1BB (CD137) is a short-lived marker for recent T-cell activation
- Separation of fresh TIL by 4-1BB sorting can enrich for tumor reactivity (Gros, J Clin Invest 2014)
- FACS for clinical use have become available

4-1BB+ TIL3992 appear to be enriched in tumor-reactive cells

Ongoing clinical study evaluating the efficacy of 4-1BB+ selected TIL in melanoma patients

Pre-Treatment

2 Months

Schematic for Rapid Generation of Mutation-Specific TIL by Cell Sorting

Cell Infusion

Conclusions

- T-cell transfers can cure some patients of widespread metastatic melanoma
- Peptide and minigene approaches have both shown that many of these tumor-reactive TIL are recognizing tumor-specific mutations
- This finding may allow not only improvements in melanoma T-cell therapy, but may lead to adoptive cell therapy for nearly any cancer
- New TIL protocols, selecting for mutation reactivity, are open for lung, ovarian, breast, bladder and GI cancers

Acknowledgements:

Steven A. Rosenberg, Chief, NCI Surgery Branch

- Rob Somerville
 - TIL Lab
- Paul Robbins
- Udai Kammula
- Richard Sherry
- Stephanie Goff
- John Wunderlich
- Steve Feldman

- Ken-ichi Hanada
- Qiong Wang
- Yong-Chen Lu
- Eric Tran
- Alena Gros

 Clinical Fellows and Nursing Staff