3-year follow-up analysis of disease-free survival in CheckMate 274 by PD-L1 expression using tumor cell and combined positive scoring algorithms

Andrea Necchi,^{12*} Dingwei Ye,¹³ Justin M. David⁷

¹University Hospital Basel, Basel, Switzerland; ²Icahn School of Medicine at Mount Sinai, New York, NY, USA; ³Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁴Radboud University, Nijmegen, the Netherlands; ⁵Technical University, Nijmegen, the Netherlands; ⁶Niigata, Japan; ⁴Radboud University, Nijmegen, the Netherlands; ⁶Niigata, Japan; ⁴Radboud University, Nijmegen, the Netherlands; ⁵Technical University, Nijmegen, the Netherlands; ⁶Niigata, Japan; ⁴Radboud University, Nijmegen, the Netherlands; ⁶Niigata, Japan; ⁴Radboud University, Nijmegen, the Netherlands; ⁵Technical University, Nijmegen, the Netherlands; ⁶Niigata, Japan; ⁴Radboud University, Nijmegen, the Netherlands; ⁶Niigata, Japan; ⁶Niigata, ⁷Bristol Myers Squibb, Princeton, NJ, USA; ⁸Hospital University of Pittsburgh, PA, USA; ¹¹Institut Paoli-Calmettes Aix-Marseille University, PA, USA; ¹¹Institut Paoli-Calmettes Aix-Marseille, France; ¹²Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ¹⁰University of Pittsburgh, PA, USA; ¹¹Institut Paoli-Calmettes Aix-Marseille, France; ¹²Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ¹⁰University of Pittsburgh, PA, USA; ¹¹Institut Paoli-Calmettes Aix-Marseille University, PA, USA; ¹¹Institut Paoli-Calmettes Aix-Marseille, France; ¹²Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ¹⁰University, PA, USA; ¹¹Institut Paoli-Calmettes Aix-Marseille, France; ¹²Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ¹⁰University, PA, USA; ¹¹Institut Paoli-Calmettes Aix-Marseille, France; ¹²Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ¹⁰University, PA, USA; ¹¹Institut Paoli-Calmettes Aix-Marseille, France; ¹²Fondazione IRCCS Istituto, ¹²Fondazione IRCCS Istituto, ¹³Institut Paoli-Calmettes Aix-Marseille, ¹⁴Fondazione, ¹⁴Fondazion ¹³Fudan University Shanghai Cancer Center, Shanghai, China

*Andrea Necchi is now with Vita-Salute San Raffaele University, IRCCS San Raffaele Hospital, Milan, Italy

Background

- Nivolumab (NIVO) was approved by the US Food and Drug Administration in 2021 and the European Commission in 2022 for the adjuvant treatment of patients with muscle-invasive urothelial carcinoma (MIUC; regardless of tumor programmed death ligand 1 [PD-L1] expression in the United States and with tumor PD-L1 expression $\geq 1\%$ in Europe) who are at high risk of recurrence after radical resection, based on the primary analysis of the phase 3 CheckMate 274 trial¹⁻⁴
- With minimum follow-up of 5.9 months (intent-to-treat [ITT] population), disease-free survival (DFS) was significantly improved with adjuvant NIVO versus placebo (PBO) both in the ITT population (hazard ratio [HR], 0.70; 98.22% confidence interval [CI], 0.55-0.90; P < 0.001) and in patients with tumor PD-L1 expression $\ge 1\%$ as assessed by the tumor cell score (TC; HR, 0.55; 98.72% CI, 0.35-0.85; P < 0.001)⁵
- In a subgroup analysis of DFS among the ITT population, patients benefitted from adjuvant NIVO irrespective of TC⁵
- Half of patients with MIUC are likely to develop disease recurrence within 2 years of radical resection.⁶ Yet the DFS benefit with adjuvant NIVO versus PBO was maintained with extended minimum follow-ups of 11.0 months and 31.6 months, both in the ITT population and in patients with TC $\geq 1\%^{7,8}$
- PD-L1 immunohistochemistry (IHC) testing has been widely implemented in clinical trials evaluating immune checkpoint inhibitors. However, interpreting PD-L1 data from tumor samples is challenging due to the multiple testing approaches used, which often includes differing scoring techniques (tumor cells vs immune cells)⁹
- To examine the relationship between the cell type expressing PD-L1 and outcomes with adjuvant NIVO, a post hoc exploratory analysis of DFS data from CheckMate 274 was performed based on PD-L1 expression levels as assessed by TC (ie, PD-L1 expression in tumor cells) or combined positive score (CPS; ie, PD-L1 expression in tumor cells and immune cells) with a minimum follow-up of 11.0 months (ITT population)^{10,11}
- More patients had CPS \geq 1 than TC \geq 1%, and most patients who had TC < 1% had CPS \geq 1
- DFS was improved with adjuvant NIVO versus PBO for patients with TC \geq 1%, CPS \geq 1, and for patients with both TC < 1% and CPS \geq 1
- Here, we report an updated post hoc exploratory analysis of DFS by PD-L1 expression as assessed by both TC and CPS with extended 3-year follow-up from CheckMate 274

Methods

- CheckMate 274 (NCT02632409) is a phase 3, randomized, double-blind, multicenter trial of adjuvant NIVO versus PBO in patients with high-risk MIUC after radical surgery (Figure 1)
- The secondary endpoint of overall survival (OS) is event-driven and will be assessed at a future database lock, per protocol

Figure 1. Study design

Key eligibility criteria

- Patients with ypT2-ypT4a or ypN+ MIUC who had neoadjuvant cisplatin chemotherapy Patients with pT3-pT4a or pN+ MIUC without prior neoadjuvant cisplatin chemotherapy
 - Tumor PD-L1 status (< 1% vs \ge 1%)^a
 - Prior neoadjuvant cisplatin-based chemotherapy

Stratification factors

- Nodal status
 - NIVO IV 240 mg Q2W Treatment for up to 1 year of adjuvant therapy PBO IV Q2W
- **Primary endpoints:** DFS in ITT population and DFS in all randomized patients with tumor cell PD-L1 \geq 1% **Secondary endpoints:** NUTRFS, DSS, and OS^b

Exploratory endpoints include DMFS^b

and not eligible/refuse adjuvant

• Radical surgery within the past 120 days

• Disease-free status within 4 weeks of dosing

cisplatin chemotherapy

^aDefined by the percent of positive tumor cell membrane staining in a minimum of 100 evaluable tumor cells using the Dako PD-L1 IHC 28-8 pharmDx assay. ^bNUTRFS, DSS, OS, and DMFS data are not presented. DMFS, distant metastasis-free survival; DSS, disease-specific survival; NUTRFS, non-urothelial tract recurrence-free survival; Q2W, every 2 weeks; , randomized

- Methods have been described previously.^{10,11} Briefly, PD-L1 IHC was performed on formalin-fixed, paraffin-embedded tumor samples from the resected site of disease, obtained before randomization, using the Dako PD-L1 IHC 28-8 pharmDx assay and assessed by pathologist
- Specimens with at least 100 evaluable tumor cells were eligible for PD-L1 scoring
- TC was determined from central laboratory testing before randomization and was calculated as the percentage of PD-L1 positive tumor cells in at least 100 evaluable tumor cells, divided by the total number of viable tumor cells in the evaluable tumor area multiplied by 100
- In this post hoc analysis, the CPS was determined retrospectively at a central laboratory from the previously stained IHC slides
- The CPS was calculated as the number of PD-L1 positive tumor and immune cells (lymphocytes and macrophages) divided by the total number of viable tumor cells in the evaluable tumor area multiplied by 100
- DFS was estimated using Kaplan-Meier methodology and compared between treatment groups using a 2-sided log-rank test

- HRs and corresponding CIs were estimated using a stratified Cox proportional hazards model with the stratification factors prior neoadjuvant cisplatin chemotherapy and pathological nodal status

Results

- at baseline (NIVO, n = 316; PBO, n = 314)
- PBO, n = 38)
- N0 with \geq 10 nodes removed (**Table 1**)
- with CPS < 1

Age, years Median (range) < 65, n (%) ≥ 65, n (%)
Sex, n (%) Male Female
Race or ethnic group, White Asian Other/not reported
PD-L1 expression of ≥ clinical source, n (%)
Tumor origin at initial Urinary bladder Renal pelvis Ureter
Minor histological vari Yes No
Previous cisplatin-base
ECOG PS, n (%) 0 1 2 Not reported Time from initial diagr randomization, n (%) < 1 year
≥ 1 year
pTX pT0 pTis pT1 pT2 pT3 pT4A Not reported
Nodal status at resection NO or NX with < 10 n NO with ≥ 10 nodes r N1 N2 N3
Not reported
LOG PS, Eastern Cooperative (

• Of the 709 patients in the ITT population (minimum study follow-up, 31.6 months [time from clinical cutoff date to last patient's randomization date]; median follow-up, 36.1 months [time between randomization date and last known alive date, for patients who are alive, or death]), 630 (88.9%) had both quantifiable PD-L1 by TC and CPS

• Of these patients, 250 (39.7%) had TC \geq 1% (NIVO, n = 125; PBO, n = 125), 380 (60.3%) had TC < 1% (NIVO, n = 191; PBO, n = 189), 558 (88.6%) had CPS \geq 1 (NIVO, n = 282; PBO, n = 276), and 72 (11.4%) had CPS < 1 (NIVO, n = 34;

— In patients with TC < 1% (n = 380), 309 (81.3%) had CPS ≥ 1

• Baseline demographic and clinical characteristics in patients with a CPS \geq 1 were generally balanced between treatment groups; however, a higher proportion of patients with NIVO versus PBO were aged < 65 years and had

- A generally similar distribution of baseline demographic and clinical characteristics was observed in patients with CPS < 1 versus CPS \ge 1. Nevertheless, differences in distribution between treatment arms in CPS < 1 included tumor origin at initial diagnosis, the presence of minor histological variants, pathologic tumor stage, and nodal status at resection. These differences should be interpreted with caution due to a low number of patients

Table 1. Baseline demographic and clinical characteristics in patients by CPS (among all randomized patients with quantifiable CPS and TC at baseline)

	CPS	CPS < 1		CPS ≥ 1		
	NIVO	PBO	NIVO	PBO		
	(n = 34)	(n = 38)	(n = 282)	(n = 276)		
	66 5 (34-83)	68 0 (47-81)	66 5 (33-92)	67 0 (42-88)		
	15 (44.1)	10 (26.3)	122 (43.3)	105 (38.0)		
	19 (55.9)	28 (73.7)	160 (56.7)	171 (62.0)		
	23 (67.6)	29 (76.3)	214 (75.9)	211 (76.4)		
	11 (32.4)	9 (23.7)	68 (24.1)	65 (23.6)		
n (%)						
	25 (73.5)	33 (86.8)	237 (84.0)	234 (84.8)		
	6 (17.6)	5 (13.2)	39 (13.8)	33 (12.0)		
	3 (8.8)	0	6 (2.1)	9 (3.3)		
1% based on						
	0	1 (2.6)	125 (44.3)	124 (44.9)		
diagnosis, n (%)						
	19 (55.9)	26 (68.4)	237 (84.0)	222 (80.4)		
	9 (26.5)	11 (28.9)	25 (8.9)	32 (11.6)		
	6 (17.6)	1 (2.6)	20 (7.1)	22 (8.0)		
ants present, n (%)						
	14 (41.2)	8 (21.1)				
	20 (58.8)	30 (78.9)	160 (56.7)	155 (56.2)		
ed therapy, n (%)	12 (35.3)	20 (52.6)	134 (47.5)	126 (45.7)		
	23 (67.6)	23 (60.5)	180 (63.8)	176 (63.8)		
	11 (32.4)	15 (39.5)	96 (34.0)	90 (32.6)		
		0	6 (2.1)	9 (3.3)		
	0	0	0	1 (0.4)		
nosis to						
	32 (94 1)	35 (92-1)	261 (92 6)	251 (90 9)		
	2 (5.9)	3 (7.9)	201 (72.0)	25 (9.1)		
at resection n (%)						
e at resection, if (%)	0	0	5 (1 8)	0		
	0	0	5 (1.8)	7 (2.5)		
	0	1 (2.6)	3 (1.1)	2 (0.7)		
	5 (14.7)	2 (5.3)	7 (2.5)	10 (3.6)		
	3 (8.8)	9 (23.7)	56 (19.9)	53 (19.2)		
	23 (67.6)	17 (44.7)	158 (56.0)	161 (58.3)		
	2 (5.9)	9 (23.7)	48 (17.0)	42 (15.2)		
	1 (2.9)	0	0	1 (0.4)		
on, n (%)						
odes removed	15 (44.1)	12 (31.6)	64 (22.7)	72 (26.1)		
emoved	3 (8.8)	8 (21.1)	80 (28.4)	65 (23.6)		
	4 (11.8)	7 (18.4)	58 (20.6)	56 (20.3)		
	12 (35.3)	/ (18.4)	68 (24.1)	66 (23.9)		
		3 (/.Y) 1 (2 4)	1 (3.9)	0 17 (6.2)		
		1 (2.0)	1 (0.4)			

Oncology Group performance status; N×, node; p, pathologic; T, tumor; Tis, tumor in situ; X, cannot be assessed

• In patients with CPS \geq 1, median DFS was 25.6 months with NIVO and 8.5 months with PBO (Figure 2; Table 2)

Figure 2. DFS in patients with CPS \geq 1

• In patients with CPS < 1, median DFS was 6.4 months with NIVO and 9.0 months with PBO (Figure 3; Table 2)

Figure 3. DFS in patients with CPS < 1

• In patients with TC < 1% and CPS \geq 1, median DFS was 19.2 months with NIVO and 10.4 months with PBO (Figure 4; Table 2)

• In patients with TC \geq 1%, median DFS was 52.6 months with NIVO and 8.4 months with PBO (Table 2) • In patients with TC < 1%, median DFS was 17.1 months with NIVO and 9.7 months with PBO (Table 2)

Frank Stenner,¹ Matthew D. Galsky,² Dean F. Bajorin,³ Johannes Alfred Witjes,⁴ Jürgen E. Gschwend,⁵ Yoshihiko Tomita,⁶ Federico Nasroulah,⁷ Margarita Askelson,⁷ Begoña P. Valderrama,⁸ Marc-Oliver Grimm,⁹ Leonard Appleman,¹⁰ Gwenaelle Gravis,¹¹

Table 2. Summary of DFS outcomes by CPS and TC status with 3-year follow-up

		Median DFS (95% CI), months	DFS probability at 24 months (95% CI), %	DFS probability at 33 months (95% CI), %	HR (95% CI) for disease recurrence or death
CPS ≥ 1	NIVO n = 282	25.6 (19.3-41.8)	50.7 (44.5-56.5)	47.4 (41.3-53.3)	0 64 (0 51 0 80)
	PBO n = 276	8.5 (7.8-15.2)	37.6 (31.8-43.5)	34.7 (28.9-40.5)	0.04 (0.51-0.80)
CPS < 1 -	NIVO n = 34	6.4 (5.1-12.6)	21.6 (9.1-37.6)	18.0 (6.8-33.6)	
	PBO n = 38	9.0 (5.4-16.9)	33.3 (18.9-48.4)	27.8 (14.6-42.6)	1.27 (0.72-2.24)
TC ≥ 1%	NIVO n = 125	52.6 (25.8-NE)	61.6 (52.1-69.8)	57.8 (48.2-66.3)	0.49.(0.24.0.(0)
	PBO n = 125	8.4 (5.6-17.9)	35.8 (27.1-44.5)	31.9 (23.6-40.6)	0.46 (0.34-0.69)
TC < 1% -	NIVO n = 191	17.1 (13.4-19.4)	38.8 (31.8-45.9)	35.9 (29.0-42.9)	
	PBO n = 189	9.7 (8.2-16.7)	38.0 (31.0-44.9)	35.0 (28.2-42.0)	0.84 (0.85-1.07)
TC < 1% and CPS ≥ 1	NIVO n = 157	19.2 (16.1-25.6)	42.5 (34.5-50.2)	39.6 (31.8-47.4)	0.70 (0.60.1.05)
	PBO n = 152	10.4 (8.2-19.4)	38.9 (31.0-46.6)	36.7 (28.9-44.4)	

Figure 4. DFS in patients with TC < 1% and CPS \geq 1

• In an analysis of DFS by subgroup in patients with CPS ≥ 1, DFS HRs generally favored NIVO over PBO in most of the subgroups analyzed, including those based on age, sex, ECOG PS, nodal status, and prior cisplatin-based chemotherapy (Figure 5)

References

- . US Food and Drug Administration. FDA approves nivolumab for adjuvant treatment of urothelial carcinoma. Accessed October 25, 2023. https://www.fda.gov/ drugs/resources-information-approved-drugs/fda-approves-nivolumab-adjuvanttreatment-urothelial-carcinoma
- OPDIVO (nivolumab) [package insert]. Princeton, NJ, USA: Bristol Myers Sauibb: 2022.
- Bristol Myers Squibb press release. Bristol Myers Squibb receives European nmission approval for Opdivo (nivolumab) as adjuvant treatment for patients with radically resected, high-risk muscle-invasive urothelial carcinoma with tumor cell PD-L1 expression ≥1%. Accessed November 1, 2023. https://news.bms com/news/corporate-financial/2022/Bristol-Myers-Squibb-Receives-European commission-Approval-for-Opdivo-nivolumab-as-Adjuvant-Treatment-for-Patientswith-Radically-Resected-High-Risk-Muscle-Invasive-Urothelial-Carcinoma-with-Tumor-Cell-PD-L1-Expression-1/default.aspx
- 4. OPDIVO (nivolumab) [summary of product characteristics]. European Medicine Agency; 2023. 5. Bajorin DF, et al. *N Engl J Med* 2021;384:2102-2114.
- 6. Drakaki A, et al. Urol Oncol 2021;39:76.e15-76.e22.
- 7. Galsky MD, et al. Poster presentation at the Society of Urologic Oncology (SUO) 22nd Annual Meeting; December 1-3, 2021; Miami, FL, USA. Poster 175.
- 8. Galsky MD. et al. J Clin Oncol 2023;41(suppl 6):LBA443.
- Doroshaw DB, et al. Nat Rev Clin Oncol 2021;18:345-362. Galsky MD, et al. Poster presentation at the American Society of Clinical Oncology (ASCO) Genitourinary Cancers Symposium; February 17-19, 2022;
- San Francisco, CA, USA. Abstract 491. Galsky MD, et al. Eur Urol 2023;83:432-440.

gure 5.	DFS by	clinical and	demographic	subgroups i	n patients	with CPS \geq 1
3	,			5 a 5 3 . 5 a P 5 .		

		NIVO	PBO		HR (95% CI)
Subgroup	Ν	no. of events	/no. of patien	ts	
Overall	558	152/282	183/276		0.64 (0.51-0.80)
Age, years					
< 65	227	62/122	68/105	_	0.57 (0.40-0.81)
≥ 65 and < 75	229	59/102	83/127	_	0.67 (0.47-0.95)
≥ 75	102	31/58	32/44	_	0.68 (0.40-1.14)
Sex					
Male	425	116/214	145/211	_ _	0.61 (0.47-0.78)
Female	133	36/68	38/65		0.86 (0.53-1.37)
Race					
White	471	128/237	156/234	_ _	0.63 (0.49-0.80)
Asian	72	20/39	20/33	_	0.71 (0.36-1.41)
Region					, , , , , , , , , , , , , , , , , , ,
US	91	20/42	36/49		0.45 (0.25-0.79)
Europe	303	88/153	96/150		0.78 (0.59-1.05)
Asia	71	20/39	19/32		0.75 (0.38-1.51)
Rest of world	93	24/48	32/45		0.48 (0.26-0.89)
Baseline FCOG PS	20	2.7.10		- I	
0	356	93/180	114/176		0 57 (0 43-0 76)
1	186	57/96	61/90		0.37(0.130.70) 0.76(0.52-1.11)
Baseline hemoglohin	100	57770	01770	T	0.70 (0.52-1.11)
	40	6/1/	18/26		0 38 (0 12 1 15)
< 10 g/dL	40 510	0/ 1 4 1/4 /244	167/20		0.30(0.12-1.13)
≥ 10 g/dL	510	140/200	102/244		0.65 (0.52-0.82)
Baseline creatinine clearance	220	(7/44)	76/110		
< 60 mL/min	Z3U	6//11Z	/0/110		0.83 (0.59-1.16)
$\geq 60 \text{ mL/min}$	318	84/16/	103/151	_ -	0.53 (0.40-0.71)
Initial tumor origin	(50				
Urinary bladder	459	12//23/	152/222		0.58 (0.46-0.74)
Renal pelvis	57	14/25	17/32		1.14 (0.54-2.39)
Ureter	42	11/20	14/22		1.28 (0.56-2.93)
Minor histologic variants					
Presence	243	67/122	76/121	_	0.68 (0.48-0.95)
Absence	315	85/160	107/155	_ _	0.62 (0.47-0.83)
Pathologic lymph node status					
N+	276	86/137	111/139	_ _	0.57 (0.42-0.76)
N0/X with < 10 nodes removed	136	34/64	41/72	_	0.83 (0.52-1.31)
N0 with \geq 10 nodes removed	145	32/80	31/65	_	0.73 (0.44-1.21)
Pathologic status					
pT0-2	138	35/68	41/70	_	0.91 (0.57-1.45)
pT3	319	84/158	105/161	_ _	0.59 (0.44-0.80)
pT4a	90	32/48	34/42		0.60 (0.36-1.00)
Prior neoadiuvant cisplatin					, , , , , , , , , , , , , , , , , , ,
Yes	260	70/134	89/126		0.51 (0.37-0.70)
No	298	82/148	94/150		0.83(0.61-1.12)
Time from surgery to	270	027110			
randomization days					
> 30-60	QQ	27/56	79 <i>/4</i> 7		0 63 (0 37-1 00)
> 50 00 > 60-90	70 721	75/120	90/1/5		0.03 (0.07-1.07) 0 68 (0 0 0 0 02)
> 00=70 > 00=70	20 1 120	רניני 20/ גע	56/77		0.00 (0.47-0.23)
<pre>> 7U-12U Smaking status</pre>	100	42/03	JU///		0.01 (0.39-0.94)
Silloking status	204	444 /204	175/400		
Current/former	391	111/201	125/190	_ _	0.65 (0.50-0.84)
Never smoked	158	39//6	57/8Z	— —	0.59 (0.38-0.90)
Baseline PD-L1 expression	0.40	F 4 / 40 F	00/404		
≥ 1%	249	54/125	80/124	—•—	0.49 (0.34-0.69)
< 1%	309	98/157	103/152		0.79 (0.60-1.05)
				0.1 1	10
			N	IVO better	PBO better

HR calculated with stratified Cox proportional hazards model. HR was not computed for subgroup (except age, region, and sex) category with fewer than 10 patients per treatment group.

Conclusions

- This post hoc exploratory analysis of PD-L1 expression by TC and CPS from the CheckMate 274 trial showed that most patients with TC < 1% had CPS \geq 1, as noted previously¹¹
- With extended follow-up (minimum, 31.6 months; median, 36.1 months), a DFS benefit with NIVO versus PBO continued to be observed in the CPS \geq 1, TC \geq 1%, and TC < 1% populations, and across most clinically relevant subgroups within the CPS \geq 1 population, consistent with previous reports in this subgroup and the ITT population in earlier follow-ups^{5,11}
- In patients with TC < 1% and CPS \geq 1, median DFS with NIVO was nearly double that with PBO, with a 21% reduction in the risk of disease recurrence or death with NIVO (DFS HR, 0.79)
- The small proportion of patients with CPS < 1 precludes definitive conclusions
- These results support the interpretation that most patients with high-risk MIUC after radical surgery and with a TC < 1% also benefit from adjuvant NIVO

Acknowledgments

• The patients and families who made this study possible

Declaration of interests

- The clinical study teams who participated
- Dako, an Agilent Technologies, Inc. company, for collaborative development of
- the PD-L1 IHC 28-8 pharmDx assav (Santa Clara, CA, USA) Bristol Myers Squibb (Princeton, NJ, USA) and Ono Pharmaceutical Company Ltd (Osaka, Japan)
- The study was supported by Bristol Myers Squibb
- All authors contributed to and approved the presentation; writing and editorial assistance were provided by Tom Vizard, PhD, of Parexel, funded by Bristol Myers Squibb

FS reports consulting or advisory roles with Bristol Myers Squibb (BMS)/Roche, Ipsen, MSD, Novartis, and Pfizer; research funding from BMS GmbH & Co. KGaA and Takeda; and travel, accommodations, and expenses from BMS GmbH & Co. KGaA and Roche.