Comparison of PD-L1 expression before and after neoadjuvant chemoradiation or chemotherapy in stage III non-small cell lung cancer (NSCLC)

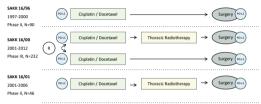
David König¹, Spasenija Savic Prince¹, Belinda Trachsel², Stefanie Hayoz², Philipp Zens³, Sabina Berezowska⁴, Wolfram Jochum⁵, Edouard Stauffer⁶, Vincent Braunersreuther⁷, Daniel C. Betticher⁸, Hans-Beat Ris⁹, Roger Stupp^{4, 10}, Lukas Bubendorf¹, Miklos Pless¹¹

¹ University Hospital Basel, Basel, Switzerland; ² Swiss Group for Clinical Cancer Research, Bern, Switzerland; ³ University Hospital Bern (Inselspital) and University of Bern, Bern, Switzerland; ⁴ Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland; ⁵ Kantonsspital St. Gallen, St. Gallen, Switzerland; ⁶ Promed Institute, Marly, Switzerland; ⁷ University Hospital Geneva (HUG), Geneva, Switzerland; ⁸ Cantonal Hospital of Fribourg (HFR), Switzerland; ⁹ Hôpital du Valais, Switzerland; ¹⁰ Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, USA; ¹¹ Kantonsspital Winterthur, Winterthur, Switzerland.

Background

- The incorporation of immune-checkpoint inhibitors (ICIs) into the multimodal treatment of operable stage III NSCLC is likely to change future treatment standards.
- Programmed cell death ligand-1 (PD-L1) expression on tumor cells is a predictive biomarker for sensitivity to ICIs targeting the PD-1/PD-L1 axis.
- Little is known on the impact of treatment modalities such as chemo-, radiotherapy and/or combinations on PD-L1 expression level.

Methods

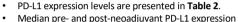

Study desian

- We collected formalin-fixed, paraffin-embedded tumor tissue samples from patients enrolled in the Swiss Group for Clinical Cancer Research (SAKK) trials 16/96 ¹, 16/00 ², 16/01 ³, and analyzed PD-L1 expression (Tumor Proportion Score) by immunohistochemistry using the Ventana PD-L1 (SP263) assay.
- The SAKK 16/96. 16/00 and 16/01 trials included patients with operable stage III NSCLC. All patients were treated with 3 cycles of induction chemotherapy (cisplatin/docetaxel), followed in some patients by radiotherapy (44 Gy, 22 fractions) (bimodal and trimodal cohort) (Figure 1).
- We analyzed diagnostic tumor tissue samples (preneoadjuvant samples) and tumor resection specimens (post-neoadjuvant samples).

Obiective

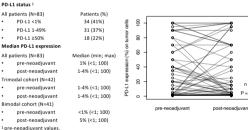
 To investigate the impact of chemotherapy and chemoradiation on the PD-L1 expression in patients with stage III NSCLC.

Figure 1. SAKK 16 trials and PD-L1 analysis.


SAKK 16/96 and 16/00 included T1-3 N2 patients only. SAKK 16/01 enrolled patients with T4 N0-3 or T1-4 N3 Chemotherapy: Cisplatin 100 mg/m² and docetaxel 85 mg/m², given once every 3 weeks Thoracic Radiotherapy: 44 Gv in 22 fractions in 3 weeks with accelerated concomitant b itant hoost radiothe

Results

- We obtained matched pre- and post-neoadjuvant tumor tissue samples from 100 patients. Due to low PD-L1 expression and significant inter-trial heterogeneity (SAKK 16/00 vs. 16/96, p = 0.0038), the samples from SAKK 16/96 trial were excluded.
- Overall, pre- and post-neoadiuvant samples from 83 patients were included in the final analysis (Table 1).


Table 1. Patient demographics and disease characteristics.

	Overall (N=83)		Tobacco use history		
Tria			•	Continued	32 (38.6%)
·	SAKK 16/00	72 (86.7%)	•	Stopped	46 (55.4%)
•	SAKK 16/01	11 (13.3%)	•	Never	5 (6.0%)
Therapy group			Smoking burden (pack-years) 1		
·	Bimodal	41 (49.4%)	·	median (min, max)	45 (5-100)
•	Trimodal	42 (50.6%)	Histology		
Age (years)			·	Adenocarcinoma	31 (37.3%)
	median (min, max)	59.0 (39.0-74.0)	·	Squamous cell carcinoma	30 (36.1%)
Sex			·	Large cell carcinoma	4 (4.8%)
	Female	29 (34.9%)	·	Poorly differentiated NSCLC	17 (20.5%)
	Male	54 (65.1%)	·	Not otherwise specified	1 (1.2%)
ECOG performance status		Stage (TNM 7 th edition)			
	0	62 (74.7%)	·	IIIA	76 (91.6%)
	1	21 (25.3%)	·	IIIB	7 (8.4%)
		,,	¹ Data collected for 74 patients.		

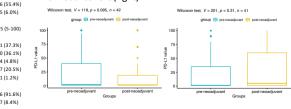
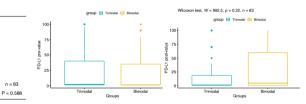

did not differ significantly (Wilcoxon test, p = 0.588) (Figure 2).

Table 2 and Figure 2. PD-L1 expression (all patients).

• There was no significant difference in either of the cohorts (trimodal and bimodal) for the median PD-L1 expression between the pre- and the postneoadjuvant samples (Figure 3).


Figure 3. PD-L1 expression in the trimodal (left) and the bimodal cohort (right).

In the comparison of the treatment arms (trimodal vs. bimodal cohort) there was no statistically significant difference for the median PD-L1 expression after

neoadiuvant treatment (p = 0.22) (Figure 4).

Figure 4. PD-L1 expression in the pre-neoadiuvant (left) and the post-neoadjuvant samples (right).

Conclusions

- Neoadjuvant treatment did not impact on PD-L1 expression. This was the case for both neoadjuvant
- chemotherapy as well as neoadiuvant chemoradiation. If the observation that radiotherapy can sensitize to treatment with ICIs holds true, it is unlikely to be mediated through an upregulation of PD-L1 expression.

References

¹ Betticher DC, et al. J Clin Oncol. 2003;21(9):1752-9. ² Stupp R. et al. Lancet Oncol. 2009;10(8);785-93.

3 Pless M, et al. Lancet. 2015;386(9998):1049-56. Acknowledges: We would like to thank the patients and their families for

their participation in the SAKK trials, and the investigators and staff for their contributions

Funding: This work was supported with grants by the Swiss Cancer Research Foundation (KFS-4381-02-2018), the Peter Bockhoff Stiftung, and the Swiss State Secretary for Education, Research and Innovation (SERI).

Poster presented at ESMO Immuno-Oncology Congress 2021 Corresponding author: David König, david.koenig@usb.ch

